Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
ChemSusChem ; : e202401384, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325655

ABSTRACT

We report here the rhodium catalyzed reductive hydroformylation of methyl 10-undecenoate. Our approach is based on an ionic liquid/heptane biphasic system associated with commercially available trialkylamines. The effects of various reaction parameters such as amine type, amine amount, temperature, syngas pressure and composition were studied in order to minimize the rhodium leaching and increase the production of primary alcohols. Although the amine is less soluble in the ionic liquid than in heptane, the catalytic system is efficiently maintained in the ionic liquid phase. For the optimized conditions, the catalytic ionic liquid layer can be recycled at least nine times by keeping an alcohol yield over 50% and by limiting the rhodium leaching. As an extension of this system and to examine the long-term stability, this batch system was transferred to a miniplant for a continuous flow process. A pilot plant was operated for 45 h of total reaction time, reaching a TTON of 232 for alcohol production.

2.
Chemphyschem ; 25(14): e202400291, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38646967

ABSTRACT

During last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature. To achieve this, OCS was first functionalized by a chain transfer agent (CTA) resulting in a macromolecular chain transfer agent (OCS-CTA), which will act as a reactive electrostatic/steric stabilizer. Owing to its UV-sensitivity, OCS-CTA was then used as photo-iniferter to initiate the polymerization of 2-hydroxypropyl methacrylate (HPMA) in aqueous acidic buffer, resulting in OCS-g-PHPMA amphiphilic grafted copolymers which self-assemble into nano-objects. Transmission electron microscopy and light scattering analysis reveal formation of spherical nanostructures.

3.
Int J Biol Macromol ; 257(Pt 2): 128610, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061531

ABSTRACT

Two eco-friendly and highly efficient adsorbents, namely brushite-chitosan (DCPD-CS), and monetite-chitosan (DCPA-CS) composites were synthesized via a simple and low-cost method and used for tetracycline (TTC) removal. The removal behavior of TTC onto the composite particles was studied considering various parameters, including contact time, pollutant concentration, and pH. The maximum TTC adsorption capacity was 138.56 and 112.48 mg/g for the DCPD-CS and DCPA-CS, respectively. Increasing the pH to 11 significantly enhanced the adsorption capacity to 223.84 mg/g for DCPD-CS and 205.92 mg/g for DCPA-CS. The antibiotic adsorption process was well-fitted by the pseudo-second-order kinetic and Langmuir isotherm models. Electrostatic attractions, complexation, and hydrogen bonding are the main mechanisms governing the TTC removal process. Desorption tests demonstrated that the (NH4)2HPO4 solution was the most effective desorbing agent. The developed composites were more efficient than DCPD and DCPA reference samples and could be used as valuable adsorbents of TTC from contaminated wastewater.


Subject(s)
Chitosan , Phthalic Acids , Water Pollutants, Chemical , Chitosan/chemistry , Adsorption , Calcium Phosphates , Tetracycline , Kinetics , Anti-Bacterial Agents , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
4.
Polymers (Basel) ; 15(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679134

ABSTRACT

Polyurethane foams (PUFs) are a significant group of polymeric foam materials. Thanks to their outstanding mechanical, chemical, and physical properties, they are implemented successfully in a wide range of applications. Conventionally, PUFs are obtained in polyaddition reactions between polyols, diisoycyanate, and water to get a CO2 foaming agent. The toxicity of isocyanate has attracted considerable attention from both scientists and industry professionals to explore cleaner synthesis routes for polyurethanes excluding the use of isocyanate. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines in the presence of an external blowing agent or by self-blowing appears to be the most promising route to substitute the conventional PUFs process and to produce isocyanate-free polyurethane foams (NIPUFs). Especially for polyhydroxyurethane foams (PHUFs), the use of a blowing agent is essential to regenerate the gas responsible for the creation of the cells that are the basis of the foam. In this review, we report on the use of different blowing agents, such as Poly(methylhydrogensiloxane) (PHMS) and liquid fluorohydrocarbons for the preparation of NIPUFs. Furthermore, the preparation of NIPUFs using the self-blowing technique to produce gas without external blowing agents is assessed. Finally, various biologically derived NIPUFs are presented, including self-blown NIPUFs and NIPUFs with an external blowing agent.

5.
Environ Sci Pollut Res Int ; 30(8): 20450-20468, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36258114

ABSTRACT

The present study highlights the olive mill wastewater (OMW) treatment characteristics through a sono-heterogeneous Fenton process using new designed [GTA-(PDA-g-DAC) @Fe3O4] and characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetic properties measurements, and point of zero charge (pH pzc) analysis. A preliminary removal study showed significant degradation efficiency (75%) occurred combining the magnetic synthesized catalyst [GTA-(PDA-g-DAC)@Fe3O4] ([catalyst] = 2 g/L) with US /H2O2 and maintaining 500WL-1 ultrasonic power (US). The values obtained by US only were (13%), H2O2/US (18%), US/Fe3O4 (28%), and US /Fe3O4/H2O2(35%). The catalytic findings have shown that [GTA-(PDA-g-DAC)@Fe3O4] exhibited good properties for OMW compound's degradation. The sonocatalytic process coupling and extra oxidant addition resulted in the degradation substantial levels. For instance, the concomitant effect of degradation optimized parameters; H2O2 10 mM, [GTA-(PDA-g-DAC) @Fe3O4] nanocomposites 2.5 g/L, at pH 3, and T 35 °C for 70 min resulted in an almost complete mineralization of aqueous OMW solution followed by a significant decolorization. Oxidation results exhibited efficient degradation rates in total phenolic compounds (TPC), total amino compounds (TAC), and chemical oxygen demand (COD) oxidation rate were 89.88, 92.75, and 95.66 respectively following the optimized sono-heterogeneous catalytic Fenton process. The prepared magnetic catalyst exhibited a good stability during repeated cycles. The gathered findings gave the evidence that sono-heterogeneous catalytic Fenton process is a promising treatment technology for OMW effluents.


Subject(s)
Olea , Wastewater , Olive Oil , Cellulose , Hydrogen Peroxide/chemistry , Catalysis , Magnetic Phenomena
6.
Nanoscale Adv ; 4(21): 4658-4668, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341296

ABSTRACT

Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 µA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.

7.
Polymers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36235882

ABSTRACT

Poly(hydroxyurethanes) (PHUs) have been suggested as isocyanate-free, low-toxicity alternatives to polyurethanes (PUs). However, PHUs present low mechanical properties due to the presence of side reactions that limit the production of high-molar mass polymers. Here, we present the synthesis under mild conditions and atmospheric pressure of bi-cyclic carbonate monomer for the production of PHU nanocomposites with good physical properties. The kinetics of the bi-cyclic carbonate synthesis and its complete conversion to urethane were followed by FTIR. The addition of functionalized boron nitrate (f-BN) with sucrose crystals improved the thermal degradation temperature as well as the glass transition by approximately 20 °C and 10 °C, respectively. The storage modulus of PHU films gradually increases with the concentration of f-BN in the composite.

8.
Biomacromolecules ; 23(6): 2536-2551, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35640245

ABSTRACT

Biobased waterborne latexes were synthesized by miniemulsion radical copolymerization of a biosourced ß-myrcene (My) terpenic monomer and styrene (S). Biobased amphiphilic copolymers were designed to act as stabilizers of the initial monomer droplets and the polymer colloids dispersed in the water phase. Two types of hydrophilic polymer backbones were hydrophobically modified by terpene molecules to synthesize two series of amphiphilic copolymers with various degrees of substitution. The first series consists of poly(acrylic acid) modified with tetrahydrogeraniol moieties (PAA-g-THG) and the second series is based on the polysaccharide carboxymethylpullulan amino-functionalized with dihydromyrcenol moieties (CMP-g-(NH-DHM)). The produced waterborne latexes with diameters between 160 and 300 nm and were composed of polymers with varying glass transition temperatures (Tg, PMy = -60 °C, Tg, P(My-co-S) = -14 °C, Tg, PS = 105 °C) depending on the molar fraction of biobased ß-myrcene (fMy,0 = 0, 0.43, or 1). The latexes successfully stabilized dodecane-in-water and water-in-dodecane emulsions for months at all compositions. The waterborne latexes composed of low Tg poly(ß-myrcene) caused interesting different behavior during drying of the emulsions compared to polystyrene latexes.


Subject(s)
Latex , Polymers , Acyclic Monoterpenes , Alkenes , Emulsifying Agents , Emulsions , Excipients , Water
9.
Environ Sci Pollut Res Int ; 29(1): 271-283, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34523096

ABSTRACT

We developed a new hybrid material resulting from an innovative supramolecular tripartite association between an ionic liquid covalently immobilized on primary ß-cyclodextrins rim and an anionic water-soluble polymer. Two hydrophilic ternary complexes based on native and permethylated ß-cyclodextrins substituted with an ionic liquid and immobilized on poly(styrene sulfonate) (CD-IL+PSS- and CD(OMe)IL+PSS-) were obtained by simple dialysis with a cyclodextrin maximal grafting rate of 25% and 20% on the polymer, respectively. These polyelectrolytes are based on electrostatic interactions between the opposite charges of the imidazolium cation of the ionic liquid and the poly(styrene sulfonate) anion. The inclusion properties of the free cavities of the cyclodextrins and the synergic effect of the polymeric matrix were studied with three reference guests such as phenolphthalein, p-nitrophenol, and 2-anilinonaphthalene-6-sulfonic acid using UV-visible, fluorescent, and NMR spectroscopies. The support has been applied successfully in dialysis device to extract and concentrated aromatic model molecule. This simple and flexible synthetic strategy opens the way to new hybrid materials useful for fast and low-cost ecofriendly extraction techniques relevant for green analytical chemistry.


Subject(s)
Cyclodextrins , Ionic Liquids , beta-Cyclodextrins , Polymers , Renal Dialysis , Water
10.
Polymers (Basel) ; 13(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34961011

ABSTRACT

Foam products are one of the largest markets for polyurethane (PU) and are heavily used in many sectors. However, current PU formulations use highly toxic and environmentally unfriendly production processes. Meanwhile, the increasing environmental concerns and regulations are intensifying the research into green and non-toxic products. In this study, we synthesized flexible polyurethane foam (PUF) using different weight percentages (0.025%, 0.05% and 0.1%) of a non-toxic bismuth catalyst. The bismuth-catalyzed foams presented a well evolved cellular structure with an open cell morphology. The properties of the bismuth-catalyzed flexible PUF, such as the mechanical, morphological, kinetic and thermal behaviors, were optimized and compared with a conventional tin-catalyzed PUF. The bismuth-catalyst revealed a higher isocyanate conversion efficiency than the stannous octoate catalyst. When comparing samples with similar densities, the bismuth-catalyzed foams present better mechanical behavior than the tin-catalyzed sample with similar thermal stability. The high solubility of bismuth triflate in water, together with its high Lewis acidity, have been shown to benefit the production of PU foams.

SELECTION OF CITATIONS
SEARCH DETAIL