Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Control ; 31: 10732748241274195, 2024.
Article in English | MEDLINE | ID: mdl-39134429

ABSTRACT

PURPOSE: Metastatic pulmonary large cell neuroendocrine carcinoma (LCNEC) is an aggressive cancer with generally poor outcomes. Effective methods for predicting survival in patients with metastatic LCNEC are needed. This study aimed to identify independent survival predictors and develop nomograms for predicting survival in patients with metastatic LCNEC. PATIENTS AND METHODS: We conducted a retrospective analysis using the Surveillance, Epidemiology, and End Results (SEER) database, identifying patients with metastatic LCNEC diagnosed between 2010 and 2017. To find independent predictors of cancer-specific survival (CSS), we performed Cox regression analysis. A nomogram was developed to predict the 6-, 12-, and 18-month CSS rates of patients with metastatic LCNEC. The concordance index (C-index), area under the receiver operating characteristic (ROC) curves (AUC), and calibration curves were adopted with the aim of assessing whether the model can be discriminative and reliable. Decision curve analyses (DCAs) were used to assess the model's utility and benefits from a clinical perspective. RESULTS: This study enrolled a total of 616 patients, of whom 432 were allocated to the training cohort and 184 to the validation cohort. Age, T staging, N staging, metastatic sites, radiotherapy, and chemotherapy were identified as independent prognostic factors for patients with metastatic LCNEC based on multivariable Cox regression analysis results. The nomogram showed strong performance with C-index values of 0.733 and 0.728 for the training and validation cohorts, respectively. ROC curves indicated good predictive performance of the model, with AUC values of 0.796, 0.735, and 0.736 for predicting the 6-, 12-, and 18-month CSS rates of patients with metastatic LCNEC in the training cohort, and 0.795, 0.801, and 0.780 in the validation cohort, respectively. Calibration curves and DCAs confirmed the nomogram's reliability and clinical utility. CONCLUSION: The new nomogram was developed for predicting CSS in patients with metastatic LCNEC, providing personalized risk evaluation and aiding clinical decision-making.


Subject(s)
Carcinoma, Neuroendocrine , Lung Neoplasms , Nomograms , SEER Program , Humans , Male , Female , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/mortality , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Retrospective Studies , Prognosis , Aged , Carcinoma, Large Cell/mortality , Carcinoma, Large Cell/pathology , Carcinoma, Large Cell/secondary , Carcinoma, Large Cell/therapy , ROC Curve , Neoplasm Staging , Adult , Survival Rate
2.
Front Immunol ; 15: 1446710, 2024.
Article in English | MEDLINE | ID: mdl-39192976

ABSTRACT

Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a serious pulmonary vascular disease characterized by residual thrombi in the pulmonary arteries and distal pulmonary microvascular remodeling. The pathogenesis of CTEPH remains unclear, but many factors such as inflammation, immunity, coagulation and angiogenesis may be involved. Monocytes are important immune cells that can differentiate into macrophages and dendritic cells and play an important role in thrombus formation. However, the distribution, gene expression profile and differentiation trajectory of monocyte subsets in CTEPH patients have not been systematically studied. This study aims to reveal the characteristics and functions of monocytes in CTEPH patients using single-cell sequencing technology, and to provide new insights for the diagnosis and treatment of CTEPH. Methods: Single-cell RNA sequencing (scRNA-seq) were performed to analyze the transcriptomic features of peripheral blood mononuclear cells (PBMCs) from healthy controls, CTEPH patients and the tissues from CTEPH patients after the pulmonary endarterectomy (PEA). We established a CTEPH rat model with chronic pulmonary embolism caused by repeated injection of autologous thrombi through a central venous catheter, and used flow cytometry to detect the proportion changes of monocyte subsets in CTEPH patients and CTEPH rat model. We also observed the infiltration degree of macrophage subsets in thrombus tissue and their differentiation relationship with peripheral blood monocyte subsets by immunofluorescence staining. Results: The results showed that the monocyte subsets in peripheral blood of CTEPH patients changed significantly, especially the proportion of CD16+ monocyte subset increased. This monocyte subset had unique functional features at the transcriptomic level, involving processes such as cell adhesion, T cell activation, coagulation response and platelet activation, which may play an important role in pulmonary artery thrombus formation and pulmonary artery intimal remodeling. In addition, we also found that the macrophage subsets in pulmonary endarterectomy tissue of CTEPH patients showed pro-inflammatory and lipid metabolism reprogramming features, which may be related to the persistence and insolubility of pulmonary artery thrombi and the development of pulmonary hypertension. Finally, we also observed that CD16+ monocyte subset in peripheral blood of CTEPH patients may be recruited to pulmonary artery intimal tissue and differentiate into macrophage subset with high expression of IL-1ß, participating in disease progression. Conclusion: CD16+ monocytes subset had significant gene expression changes in CTEPH patients, related to platelet activation, coagulation response and inflammatory response. And we also found that these cells could migrate to the thrombus and differentiate into macrophages with high expression of IL-1ß involved in CTEPH disease progression. We believe that CD16+ monocytes are important participants in CTEPH and potential therapeutic targets.


Subject(s)
Hypertension, Pulmonary , Monocytes , Pulmonary Embolism , Receptors, IgG , Single-Cell Analysis , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/metabolism , Monocytes/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Pulmonary Embolism/immunology , Pulmonary Embolism/metabolism , Animals , Male , Chronic Disease , Rats , Female , Middle Aged , GPI-Linked Proteins/metabolism , Disease Models, Animal , Transcriptome , Aged , Pulmonary Artery/metabolism , Pulmonary Artery/immunology , Pulmonary Artery/pathology
3.
Front Microbiol ; 9: 1288, 2018.
Article in English | MEDLINE | ID: mdl-29967599

ABSTRACT

In this study, one of the dominant pathogens, which caused postharvest diseases such as anthracnose, was isolated from decayed 'Hongyang' kiwifruit. It was identified as Colletotrichum acutatum by its morphological characteristics and standard internal transcribed spacer ribosomal DNA sequence. Further, the efficacy and possible mechanism of cinnamon essential oil on inhibition of C. acutatum were investigated. Results showed that C. acutatum was dose-dependently inhibited by cinnamon essential oil. Meanwhile, the mycelial growth and spore germination of C. acutatum were completely inhibited at the concentrations of 0.200 µL/mL and 0.175 µL/mL (v/v), respectively. Indeed, both minimal inhibitory and minimum fungicidal concentrations of cinnamon essential oil were measured as 0.200 µL/mL. Additionally, the possible antifungal mechanism of cinnamon essential oil on C. acutatum was demonstrated. Results showed that the cinnamon essential oil could destroy the cell membrane integrity of C. acutatum, and the structure of cell membrane was changed. Indeed, the cell cytoplasm including soluble protein, sugar, and nucleic acid was released, which significantly changed the extracellular conductivity. Results suggested that the cinnamon essential oil exerted great potential to be used as a natural and efficient preservative for kiwifruit postharvest storage, which were helpful for the better understanding of the efficacy and mechanism of cinnamon essential oil on inhibition of pathogens isolated from decayed 'Hongyang' kiwifruit.

SELECTION OF CITATIONS
SEARCH DETAIL