Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ChemMedChem ; 18(6): e202200434, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36692246

ABSTRACT

Chagas disease is a neglected tropical disease caused by the protozoa Trypanosoma cruzi. Cruzain, its main cysteine protease, is commonly targeted in drug discovery efforts to find new treatments for this disease. Even though the essentiality of this enzyme for the parasite has been established, many cruzain inhibitors fail as trypanocidal agents. This lack of translation from biochemical to biological assays can involve several factors, including suboptimal physicochemical properties. In this work, we aim to rationalize this phenomenon through chemical space analyses of calculated molecular descriptors. These include statistical tests, visualization of projections, scaffold analysis, and creation of machine learning models coupled with interpretability methods. Our results demonstrate a significant difference between the chemical spaces of cruzain and T. cruzi inhibitors, with compounds with more hydrogen bond donors and rotatable bonds being more likely to be good cruzain inhibitors, but less likely to be active on T. cruzi. In addition, cruzain inhibitors seem to occupy specific regions of the chemical space that cannot be easily correlated with T. cruzi activity, which means that using predictive modeling to determine whether cruzain inhibitors will be trypanocidal is not a straightforward task. We believe that the conclusions from this work might be of interest for future projects that aim to develop novel trypanocidal compounds.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Cysteine Endopeptidases/chemistry , Chagas Disease/drug therapy , Protozoan Proteins , Trypanocidal Agents/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemistry
2.
Expert Opin Ther Pat ; 32(5): 561-573, 2022 May.
Article in English | MEDLINE | ID: mdl-35137661

ABSTRACT

INTRODUCTION: Cathepsin K (CatK) is a lysosomal cysteine protease and the predominant cathepsin expressed in osteoclasts, where it degrades the bone matrix. Hence, CatK is an attractive therapeutic target related to diseases characterized by bone resorption, like osteoporosis. AREAS COVERED: This review summarizes the patent literature from 2011 to 2021 on CatK inhibitors and their potential use as new treatments for osteoporosis. The inhibitors were classified by their warheads, with the most explored nitrile-based inhibitors. Promising in vivo results have also been disclosed. EXPERT OPINION: As one of the most potent lysosomal proteins whose primary function is to mediate bone resorption, cathepsin K remains an excellent target for therapeutic intervention. Nevertheless, there is no record of any approved drug that targets CatK. The most notable cases of drug candidates targeting CatK were balicatib and odanacatib, which reached Phase II and III clinical trials, respectively, but did not enter the market. Further developments include exploring new chemical entities beyond the nitrile-based chemical space, with improved ADME and safety profiles. In addition, CatK's role in cancer immunoexpression and its involvement in the pathophysiology of osteo- and rheumatoid arthritis have raised the race to develop activity-based probes with excellent potency and selectivity.


Subject(s)
Bone Resorption , Osteoporosis , Bone Resorption/drug therapy , Cathepsin K/metabolism , Humans , Nitriles/pharmacology , Nitriles/therapeutic use , Osteoporosis/drug therapy , Patents as Topic
SELECTION OF CITATIONS
SEARCH DETAIL