Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Physiol Plant ; 176(2): e14242, 2024.
Article En | MEDLINE | ID: mdl-38439528

The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.


Arabidopsis , Mangifera , Mangifera/genetics , Arabidopsis/genetics , Circadian Rhythm , Droughts , Flowers/genetics , Saccharomyces cerevisiae
2.
Front Plant Sci ; 13: 1028987, 2022.
Article En | MEDLINE | ID: mdl-36325546

CONSTANS/CONSTANS-like (CO/COL) transcription factors play a vital role in the photoperiodic flowering pathway. However, the biological functions of COL genes in mango are unclear. In this study, we identified 31 COL genes from the 'Jin Huang' mango genome and divided them into three groups according to the specific gene structure and protein domain characteristics. These 31 MiCOL genes were heterogeneously distributed on 14 chromosomes. Expression pattern analysis showed that most MiCOL genes were mainly expressed in leaves and stems and during the floral induction period, followed by the floral differentiation period. The expression of COL genes was induced by drought and salt stress, but the expression patterns of different genes were different, which may suggest that MiCOL genes are involved in the abiotic stress response of mango. Under salt and drought conditions, two MiCOL9 genes can improve the resistance of Arabidopsis by improving the scavenging ability of ROS and proline accumulation and reducing the MDA content. Additionally, overexpression of MiCOL9 genes significantly inhibited flowering in transgenic Arabidopsis. This work provides an important foundation for understanding the biological roles of mango COL genes in plant growth, development and stress responses.

3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article En | MEDLINE | ID: mdl-36142343

S-RNase plays vital roles in the process of self-incompatibility (SI) in Rutaceae plants. Data have shown that the rejection phenomenon during self-pollination is due to the degradation of pollen tube RNA by S-RNase. The cytoskeleton microfilaments of pollen tubes are destroyed, and other components cannot extend downwards from the stigma and, ultimately, cannot reach the ovary to complete fertilisation. In this study, four S-RNase gene sequences were identified from the 'XiangShui' lemon genome and ubiquitome. Sequence analysis revealed that the conserved RNase T2 domains within S-RNases in 'XiangShui' lemon are the same as those within other species. Expression pattern analysis revealed that S3-RNase and S4-RNase are specifically expressed in the pistils, and spatiotemporal expression analysis showed that the S3-RNase expression levels in the stigmas, styles and ovaries were significantly higher after self-pollination than after cross-pollination. Subcellular localisation analysis showed that the S1-RNase, S2-RNase, S3-RNase and S4-RNase were found to be expressed in the nucleus according to laser confocal microscopy. In addition, yeast two-hybrid (Y2H) assays showed that S3-RNase interacted with F-box, Bifunctional fucokinase/fucose pyrophosphorylase (FKGP), aspartic proteinase A1, RRP46, pectinesterase/pectinesterase inhibitor 51 (PME51), phospholipid:diacylglycerol acyltransferase 1 (PDAT1), gibberellin receptor GID1B, GDT1-like protein 4, putative invertase inhibitor, tRNA ligase, PAP15, PAE8, TIM14-2, PGIP1 and p24beta2. Moreover, S3-RNase interacted with TOPP4. Therefore, S3-RNase may play an important role in the SI of 'XiangShui' lemon.


Aspartic Acid Proteases , Citrus , Self-Incompatibility in Flowering Plants , Citrus/metabolism , Diacylglycerol O-Acyltransferase , Endoribonucleases , Fucose , Gibberellins , Phospholipids , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , RNA , RNA Ligase (ATP) , Ribonucleases/genetics , Ribonucleases/metabolism , Self-Incompatibility in Flowering Plants/genetics , beta-Fructofuranosidase
...