Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Int J Biol Macromol ; 279(Pt 4): 135577, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39270907

ABSTRACT

Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Alginates/chemistry , Bandages , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology
2.
Article in English | MEDLINE | ID: mdl-39317522

ABSTRACT

The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.

3.
Int J Gen Med ; 17: 3493-3509, 2024.
Article in English | MEDLINE | ID: mdl-39161403

ABSTRACT

Purpose: Preeclampsia (PE) is a serious complication of obstetrics and represents a significant challenge in terms of understanding its underlying mechanism. It has been shown that a number of disorders involve dysregulation of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2). However, the relationship between PE and CITED2 is still mostly unclear. This work aimed to confirm the hub genes linked to PE and explore the roles of CITED2 in trophoblast using experimental and bioinformatic methods. Methods: To determine the hub genes, bioinformatics research was performed on two datasets from the Gene Expression Omnibus (GEO) public database. Immune infiltration analysis and enrichment analysis were also used to identify the related pathways and immune cells. PCR and WB were then used to validate the mRNA and protein levels of CITED2 in the PE samples. Finally, the expression of CITED2 was knocked down using siRNA to investigate the function of CITED2 in trophoblast development in vitro. Results: The study's findings showed that the NOTCH signaling pathways, glycolysis, and hypoxia were the main areas of enrichment for the six PE-related genes that were tested. The results of immune infiltration suggest that activated NK cells and regulatory T cells may play an important role in this process. CITED2 was significantly upregulated in the PE placenta. In functional tests, the knockdown of CITED2 may enhance apoptosis while suppressing migration, invasion, and proliferation of cells. Conclusion: This study offers important proof that CITED2 influences trophoblast cell function and may one day be a therapeutic target for PE.

4.
Int J Biol Macromol ; 279(Pt 2): 135143, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39208889

ABSTRACT

The burdens of microbial food safety and environmental contamination make it necessary to search sustainable, safe, antibacterial and antioxidant active food packaging materials. This contribution proposed the use of copper-ferulic acid networks (CuFA NWs) as antibacterial substances. By immobilizing CuFA NWs into carrageenan matrix, a CuFA network-reinforced carrageenan-based packaging film (Carr/CuFA) was obtained via spontaneously hydrogen bond and electrostatic interaction indicated by ATR-IR and XPS. Interestingly, the addition of CuFA NWs increased the mechanical strength, surface hydrophobicity, and water vapor barrier properties of the carrageenan-based film, and imparted the film with UV-shielding capacity. Importantly, the Carr/CuFAx film exhibited effective antioxidant activity, and antibacterial performance against four foodborne bacteria. As a result, after confirming the safety of Carr/CuFA3 films by releasing, hemolysis and cell viability experiments, the Carr/CuFA3 film exhibited great potential in the safety control and preservation of fresh fruit by using blueberry and cherry as model fruit. In summary, this work provides a feasible candidate for the preservation and contamination control of fresh fruit.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Carrageenan , Food Packaging , Carrageenan/chemistry , Carrageenan/pharmacology , Food Packaging/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Copper/chemistry , Copper/pharmacology , Phenols/chemistry , Phenols/pharmacology , Hydrophobic and Hydrophilic Interactions , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Steam
5.
Poult Sci ; 103(9): 103994, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991385

ABSTRACT

Different rearing systems have varying effect on animal welfare and meat quality of poultry. Currently, there are no established standards for the rearing systems of Chinese indigenous chickens. Our study aimed to investigate the effects of different rearing systems on the meat quality, gene profiles, and metabolites of Chinese indigenous chickens (Nanchuan chicken). 10-wk-old Nanchuan chickens (n=360) were randomly divided into 3 groups (cage, net, and free-range groups), with 6 replicates per group (20 chickens per replicate). The experiment lasted for 12 wk. At 154-days-old, 36 healthy chickens (6 males and 6 females per group) were randomly selected, euthanized, and their breast muscles were collected to assess the meat quality parameters and histomorphological characteristics. Additionally, breast muscles from 18 random hens (3 males and 3 females per group) were used for metabolomics and RNA-seq analysis. The results showed that rearing systems significantly affected the meat quality and myofiber characteristics. The meat quality of breast muscles from free-range chickens was superior to that of caged chickens, characterized by more tender meat and smaller myofiber cross-sectional areas. Integrative metabolomics and transcriptomics analysis revealed that the differentially expressed genes of chicken breast muscles were primarily involved in the myofiber differentiation. Mechanically, the improved meat quality of breast muscle in free-range chickens were mainly associated with enhanced skeletal muscle differentiation facilitated by fibromodulin, increased levels of up-regulated Acetyl-L-carnitine and Propionylcarnitine level, and decreased levels of Nonanoic acid and Elaidic acid abundance (Graphical abstract). This provides a comprehensive understanding of the most effective and sustainable breeding, production, and rearing systems for Chinese indigenous chickens. It also contributes to the current knowledge of the molecular mechanisms underlying the effects of rearing systems on growth performance and meat quality of chickens.


Subject(s)
Animal Husbandry , Chickens , Meat , Animals , Chickens/genetics , Chickens/physiology , Chickens/growth & development , Meat/analysis , Meat/standards , Male , Female , Animal Husbandry/methods , Metabolomics , Transcriptome , Gene Expression Profiling/veterinary , Random Allocation , Pectoralis Muscles/physiology , Pectoralis Muscles/metabolism , Housing, Animal
6.
J Environ Manage ; 366: 121680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971063

ABSTRACT

Refined magnesium slag and aluminum dross are two typical hazardous solid wastes that contain significant amounts of leachable fusing agent and aluminum droplets encapsulated by dense oxidized films, respectively. This study creatively proposes a safe and green method for the joint utilization of these two wastes. The interfacial reaction behavior revealed that the dense oxidized films of the aluminum droplets were significantly broken by the erosive action of the fusing agent, providing the necessary conditions for the movement of aluminum droplets. Consequently, the aluminum droplets successfully broke free from the oxidized films and separated together with the fusing agent from the dross under the force of supergravity. The recovery ratios of metallic aluminum and fusing agent reached 98.95 % and 98.13 %, while the aluminum and fusing agent contents in the tailings were reduced to 0.82 wt% and 3.71 wt%. The study also discusses the leaching characteristic of the tailings and the scalability for industrial applications of this method in detail. This study not only achieves valuable resource recovery but also reduces the leaching risk and alleviates the land occupation and ecosystem pressure caused by industrial wastes. The tailings can be harmlessly utilized in related fields through subsequent scientific treatment.


Subject(s)
Aluminum , Magnesium , Aluminum/chemistry , Magnesium/chemistry
7.
J Virol Methods ; 329: 114986, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914314

ABSTRACT

Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to the swine industry, causing severe disease and resulting in substantial economic losses. Despite China's implementation of a large-scale vaccine immunization strategy in recent years, various strains of PEDV, including classical attenuated vaccine strains, continue to emerge in immunized pig herds. Here, we established a one-step real-time fluorescent reverse transcription PCR (one-step real-time RT-PCR) assay targeting a 24-nucleotide deletion in the ORF1 region of three PEDV classical attenuated vaccine strains, derived from classical strains. This assay effectively distinguishes between PEDV classical attenuated vaccine strains and wild-type strains, and we also explore the causes of this discriminatory target deficiency of this method through phylogenetic and recombination analysis. We found that these three classical attenuated vaccine strains exhibit closer phylogenetic relationships and higher sequence similarity with five cell-adapted strains. Recombination analysis revealed that although recombination is widespread in the PEDV genome, the 24-nucleotide deletion site remains stable without undergoing recombination and can be utilized as a target for identification. Further analysis revealed there are no enzyme cleavage sites near the 24-nucleotide site, suggesting that this deletion may have been lost during the process of culturing these viral strains in cells.The detection method we have established exhibits high specificity and sensitivity to PEDV, without cross-reactivity with other viruses causing diarrheal diseases. A total of 117 swine fecal samples were analyzed using this established one-step real-time reverse transcription PCR assay, indicating the presence of classical attenuated vaccine strains in pig herds in Gansu province, China. Additionally, the designed primer pairs and two probes can be placed in a single reaction tube to differentiate between these two types of strains, effectively reducing detection costs. These findings offer an efficient and cost-effective technological platform for clinical rapid identification testing of both wild-type and classical attenuated vaccine strains of PEDV, as well as for precise investigation of clinical data on natural infections and vaccine immunity in pig herds.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Real-Time Polymerase Chain Reaction , Sequence Deletion , Swine Diseases , Vaccines, Attenuated , Viral Vaccines , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Swine Diseases/virology , Swine Diseases/prevention & control , Swine Diseases/diagnosis , Viral Vaccines/genetics , Viral Vaccines/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , China , Reverse Transcriptase Polymerase Chain Reaction/methods , Phylogeny , Sensitivity and Specificity , Cost-Benefit Analysis
8.
BMC Ophthalmol ; 24(1): 145, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561680

ABSTRACT

BACKGROUND: The purpose of this study was to analyze myopic regression after corneal refractive surgery (CRS) in civilian pilots and to explore the factors that may cause long-term myopic regression. METHODS: We included civilian pilots who had undergone CRS to correct their myopia and who had at least 5 years of follow-up. We collected retrospective data and completed eye examinations and a questionnaire to assess their eye habits. RESULTS: A total of 236 eyes were evaluated in this study. 211 eyes had Intrastromal ablations (167 eyes had laser in situ keratomileusis, LASIK, 44 eyes had small incision lenticule extraction, SMILE) and 25 eyes had subepithelial ablations (15 eyes had laser epithelial keratomileusis, LASEK and 10 eyes had photorefractive keratectomy, PRK). The mean preoperative spherical equivalent (SE) was - 2.92 ± 1.11 D (range from - 1.00 to -5.00 D). A total of 56 eyes (23.6%) suffered from myopic regression after CRS. Comparisons of individual and eye characteristics between the regression and non-regression groups revealed statistically significant differences in age, cumulative flight time, postoperative SE (at 6 months and current), uncorrected visual acuity (UCVA), accommodative amplitude (AA), positive relative accommodation (PRA), postoperative period, types of CRS and eye habits. Generalized propensity score weighting (GPSW) was used to balance the distribution of covariates among different age levels, types of CRS, cumulative flying time, postoperative period and continuous near-work time. The results of GPS weighted logistic regression demonstrated that the associations between age and myopic regression, types of CRS and myopic regression, continuous near-work time and myopic regression were significant. Cumulative flying time and myopic regression, postoperative period and myopic regression were no significant. Specifically, the odds ratio (OR) for age was 1.151 (P = 0.022), and the OR for type of CRS was 2.769 (P < 0.001). The OR for continuous near-work time was 0.635 with a P value of 0.038. CONCLUSIONS: This is the first report to analyze myopic regression after CRS in civilian pilots. Our study found that for each year increase in age, the risk of civilian pilots experiencing myopic regression was increased. Intrastromal ablations had a lower risk of long-term myopia regression than subepithelial ablations. There is a higher risk of myopic progression with continuous near-work time > 45 min and poor accommodative function may be related factors in this specific population.


Subject(s)
Keratomileusis, Laser In Situ , Myopia , Photorefractive Keratectomy , Humans , Infant , Retrospective Studies , Cornea/surgery , Photorefractive Keratectomy/methods , Visual Acuity , Refraction, Ocular , Keratomileusis, Laser In Situ/methods , Lasers, Excimer/therapeutic use , Myopia/surgery , Treatment Outcome
10.
Front Biosci (Elite Ed) ; 16(1): 6, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38538524

ABSTRACT

BACKGROUND: This research explores the significance of miR-215-5p and vasculogenic mimicry (VM) in forecasting the prognosis for hepatocellular carcinoma (HCC). METHODS: We analyzed HCC-associated miRNA expression profiles using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Samples included tissue and blood from 80 early-stage HCC patients and serum from 120 healthy individuals. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure miR-215-5p and zinc finger E-box binding homeobox 2 (ZEB2) gene expressions. Hematoxylin and eosin (H&E) and CD34/Periodic Acid-Schiff (PAS) double staining assessed VM presence in HCC tissue sections. Bioinformatics tools predicted interactions between miR-215-5p and ZEB2, confirmed through luciferase reporter assays. We also examined the impact of miR-215-5p or ZEB2 overexpression on HCC cell invasion, migration, and VM formation using scratch, Transwell invasion assays, and Matrigel 3D cultures. RESULTS: Bioinformatics analysis indicated that miR-215-5p was under-expressed in HCC, particularly in cases with vascular invasion, which correlated with worse patient outcomes. In contrast, ZEB2, targeted by miR-215-5p, was overexpressed in HCC. RT-qPCR validated these expression patterns in HCC tissues. Among the HCC patients, 38 were VM positive and 42 VM negative. Logistic regression highlighted a negative correlation between miR-215-5p levels and VM positivity in HCC tissues and a positive correlation for ZEB2 with VM positivity and tumor vascular invasion. Lower miR-215-5p levels were linked to increased HCC recurrence and metastasis. Both bioinformatics analysis and luciferase assays demonstrated a direct interaction between miR-215-5p and ZEB2. Enhancing miR-215-5p levels reduced ZEB2 expression, consequently diminishing invasion, migration, and VM formation of the HCC cells in vitro. CONCLUSIONS: miR-215-5p expression inversely correlates with VM occurrence in HCC tissues, while ZEB2 expression shows a direct correlation. By targeting ZEB2, miR-215-5p may hinder VM in HCC tissues, helping to prevent vascular invasion and HCC recurrence. Thus, miR-215-5p emerges as a vital prognostic indicator for predicting vascular invasion and recurrence in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Luciferases/genetics , Luciferases/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
11.
Animals (Basel) ; 14(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396502

ABSTRACT

Prolonged exposure to high temperatures and humidity can trigger heat stress in animals, leading to subsequent immune suppression. Lipopolysaccharides (LPSs) act as upstream regulators closely linked to heat stress, contributing to their immunosuppressive effects. After an initial examination of transcriptome sequencing data from individual samples, 48 genes displaying interactions were found to potentially be associated with heat stress. Subsequently, to delve deeper into this association, we gathered chicken bone marrow dendritic cells (BMDCs). We combined heat stress with lipopolysaccharides and utilized a 48 × 48 Fluidigm IFC quantitative microarray to analyze the patterns of gene changes under various treatment conditions. The results of the study revealed that the combination of heat stress and LPSs in a coinfection led to reduced expressions of CRHR1, MEOX1, and MOV10L1. These differentially expressed genes triggered a pro-inflammatory response within cells via the MAPK and IL-17 signaling pathways. This response, in turn, affected the intensity and duration of inflammation when experiencing synergistic stimulation. Therefore, LPSs exacerbate the immunosuppressive effects of heat stress and prolong cellular adaptation to stress. The combination of heat stress and LPS stimulation induced a cellular inflammatory response through pathways involving cAMP, IL-17, MAPK, and others, consequently leading to decreased expression levels of CRHR1, MEOX1, and MOV10L1.

12.
J Hazard Mater ; 468: 133834, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387176

ABSTRACT

Massive copper slag containing heavy metals is produced in copper making and 0.5 - 8.0 wt% Cu is lost into it, deserving to be recovered. In this study, the waste coke and gypsum were employed to clean the copper slag, the lost copper was reduction-sulfurized and enriched to the matte droplets. However, the free-settling of matte droplets under normal gravity needed a higher temperature of 1350 â„ƒ. On this basis, the matte droplets were efficiently separated from the cleaned slag via super-gravity at a low temperature of 1200 â„ƒ within 3 min, the recovery ratio of Cu was up to 99.56%, and the grade of Cu in the matte phase and cleaned slag was 85.84 wt% and 0.08 wt%, respectively. Moreover, the migration, distribution and leaching behavior of heavy metal elements (Pb, Zn, Ni, etc.,) were performed and analyzed, and the treatment and utilization of volatilized vapors and tailings were also discussed. This study proposed a green method to clean the copper slag and simultaneously recover copper resources via reduction-sulfurizing smelting and super-gravity separation at a low temperature, providing scientific guidance and application prospects for the synergistic treatment of hot copper slag with waste coke and gypsum.

13.
J Pathol ; 262(4): 427-440, 2024 04.
Article in English | MEDLINE | ID: mdl-38229567

ABSTRACT

Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Cerebellar Neoplasms , Fanconi Anemia , Ferroptosis , Medulloblastoma , Mice , Animals , Humans , Medulloblastoma/genetics , Medulloblastoma/radiotherapy , Ferroptosis/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/radiotherapy , Cell Line, Tumor , Fanconi Anemia Complementation Group D2 Protein/genetics
14.
Colloids Surf B Biointerfaces ; 234: 113640, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042109

ABSTRACT

A tannate-iron network-derived peroxidase-like catalyst loaded with Fe ions on carbon nitride (C3N4) was reported for detection of total antioxidant capacity (TAC) in food in this study. Metal-phenolic networks (MPNs) was employed to form a low coordination compound on C3N4, and calcined catalyst formed hollow structure with abundant and uniform Fe sites and surface folds. CN-FeC exhibited significant peroxidase-like activity and high substrate affinity. The homogeneous distribution of amorphous Fe elements on the C3N4 substrate provides more active sites, resulting in provided excellent catalytic activity to activate H2O2 to ·OH, 1O2 and O2·-. The established CN-FeC/TMB/H2O2 colorimetric system can detect AA in the concentration range of 5-40 µM, with the detection limits of 1.40 µM, respectively. It has good accuracy for the detection of vitamin C tablets, beverages. Taken together, this work shows that metal-phenolic networks can be an effective way to achieve efficient utilization of metal atoms and provides a promising idea for metal-phenolic networks in nanoparticle enzyme performance enhancement.


Subject(s)
Antioxidants , Nanoparticles , Hydrogen Peroxide/chemistry , Peroxidase/chemistry , Peroxidases/chemistry , Nanoparticles/chemistry , Colorimetry/methods , Iron
15.
Am J Clin Nutr ; 119(2): 333-343, 2024 02.
Article in English | MEDLINE | ID: mdl-38110039

ABSTRACT

BACKGROUND: Healthy diet is essential for cardiovascular disease risk management, but its effects among Chinese patients, whose diets differ from Western diets, remain largely unknown. METHODS: In this multicenter, patient- and outcome assessor-blind, randomized controlled feeding trial, 265 Chinese adults with baseline systolic blood pressure 130 to 159 mmHg were randomly assigned into Chinese heart-healthy (CHH) diet or usual diet for a 28-d intervention after a 7-d run-in period on usual diet. Blood lipids and glucose were measured from overnight fasting blood samples before and after the intervention. Ten-year cardiovascular disease risk was estimated using models previously developed and validated in Chinese. The changes in secondary outcomes of serum total cholesterol (TC), blood glucose, and 10-y cardiovascular disease risk over the intervention period were compared between intervention groups, adjusting for center, among participants with baseline and follow-up blood samples available. Sensitivity analyses were done with further adjustment for baseline values and covariables; missing data imputed; and among per-protocol population. RESULTS: Among 256 eligible participants (130 on CHH diet, 126 on control diet), 42% had hypercholesterolemia and 15% had diabetes at baseline. In the control group, TC and 10-y cardiovascular disease risk decreased after the intervention by 0.16 mmol/L and 0.91%, respectively, but blood glucose increased by 0.25 mmol/L. Compared with usual diet, the CHH diet lowered TC (-0.14 mmol/L, P = 0.017) and 10-y cardiovascular disease risk (-1.24%, P = 0.001) further. No effect on blood glucose was found. All sensitivity analyses confirmed the results on TC and 10-y cardiovascular disease risk, and analysis with multiple variables adjusted showed a borderline significant effect on blood glucose (-0.17 mmol/L, P = 0.051). The differences in intake of nutrients and food groups between intervention groups explained the results. CONCLUSIONS: The CHH diet reduced TC and 10-y cardiovascular disease risk and was likely to reduce blood glucose among Chinese adults with mild hypertension. Further studies with longer terms are warranted. This trial was registered at clinicaltrials.gov as NCT03882645.


Subject(s)
Blood Glucose , Cardiovascular Diseases , Adult , Humans , Glucose , Cardiovascular Diseases/prevention & control , Diet, Healthy , Blood Pressure , Lipids , Diet , China
16.
J Nanobiotechnology ; 21(1): 496, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115131

ABSTRACT

Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.


Subject(s)
Enterocolitis, Necrotizing , Exosomes , Extracellular Vesicles , Animals , Humans , Infant, Newborn , Milk/chemistry , Intestinal Mucosa , Enterocolitis, Necrotizing/prevention & control
17.
3 Biotech ; 13(11): 367, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37846216

ABSTRACT

The pathogenesis of avian leukosis virus subgroup J (ALV-J) is complex and our understanding of it is limited. Based on our previous research, we explored the relationship between ALV-J infection and regulatory factor 1&7 (IRF1 and IRF7), interferon beta (IFNß), and the newly identified long noncoding RNA IRF1 (LncIRF1). LncIRF1 is 1603 nt and exists in the cytoplasm and nucleus. After the occurrence of ALV-J infection, the expression levels of LncIRF1, IRF1, IRF7, and IFNß varied in different chicken tissues. In DF1 cell lines of chicken embryo fibroblast cells (DF1 cells) the expression levels of LncIRF1, IRF7, IRF1, and IFNß increased when ALV-J infection. Similarly, after LncIRF1 overexpression and the ALV-J challenge, the expression levels of IRF1, IRF7, and IFNß increased, while increased LncIRF1 inhibited the proliferation of DF1 cells. Interference with LncIRF1 did not affect IRF1, IRF7, and IFNß. However, expression levels of IRF1, IRF7, and IFNß decreased due to LncIRF1 interference after the ALV-J challenge. An assay of the RNA-binding domain abundant in apicomplexans indicated that most of the proteins bound to LncIRF1 are related to cell proliferation and viral replication and these proteins also interact with IRF1, IRF7, and IFNß. We suggest that LncIRF1 plays an important immunomodulatory role in the anti-ALV-J response. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03773-y.

18.
Eur J Neurosci ; 58(8): 3892-3902, 2023 10.
Article in English | MEDLINE | ID: mdl-37779210

ABSTRACT

The supraspinal mechanism plays a key role in developing and maintaining chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). However, it is not clear how white matter changes in young and middle-aged males with CP/CPPS. In this cross-sectional study, 23 CP/CPPS patients and 22 healthy controls (HCs) were recruited. Tract-based spatial statistics was applied to investigate the differences in diffusion tensor imaging metrics, including fractional anisotropy (FA), mean diffusion (MD), radial diffusion (RD) and axial diffusion (AD), between CP/CPPS patients and HCs. The study also examined the association between white matter alterations and clinical variables in patients using correlation analysis. Compared with HCs, patients showed decreased FA, MD, RD and AD in the body and genu of the corpus callosum and right anterior corona radiata. In addition, they showed increased FA along with decreased MD, RD and AD in the left posterior limb of the internal capsule (PLIC-L), left external capsule and left cerebral peduncle. The FA of PLIC-L was negatively correlated with disease duration (r = -.54, corrected p = .017), while MD and RD were positively correlated (r = .45, corrected p = .042; r = .57, corrected p = .017). These results suggest that CP/CPPS is associated with extensive changes in white matter tracts, which are involved in pain processing. In particular, the FA, MD and RD values in the PLIC-L were correlated with the disease duration, indicating that the long-term course of CP/CPPS may have effects on the white matter microstructure of the pain perception pathways.


Subject(s)
Prostatitis , White Matter , Male , Middle Aged , Humans , White Matter/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , Prostatitis/diagnostic imaging , Pelvic Pain/diagnostic imaging
19.
Mol Cell Endocrinol ; 578: 112061, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37678604

ABSTRACT

Hepatic lipid deposition is the main cause of non-alcoholic fatty liver disease (NAFLD). Our previous study identified that lnc-HC prevents NAFLD by increasing the expression of miR-130b-3p. In the present study, we show that lnc-HC, an lncRNA derived from hepatocytes, positively controls miR-130b-3p maturation at multiple levels and contributes to its action by enhancing the assembly of an RNA-induced silencing complex (RISC). lnc-HC negatively regulates the downstream target genes of miR-130b-3p, including peroxisome proliferator-activated receptor gamma (PPARγ) and acyl-CoA synthetase long-chain family member 1 and 4 (Acsl1 and Acsl4, respectively), thus suppressing hepatic lipid droplet accumulation. Mechanistically, lnc-HC enhanced the promoter activity of miR-130b-3p by positively regulating the expression of transcription factors MAF bZIP transcription factor B (Mafb) and Jun proto-oncogene (Jun). Then, lnc-HC contributed the processing step of primary (pri-) miR-130b and strengthened the interaction between Drosha enzyme and the 5'-flanking sequence of pri-miR-130b to produce more precursor transcripts. Through direct binding with the chaperone heat shock protein 90 alpha family class A member 1 (HSP90AA1), lnc-HC contributed to RISC assembly, which was composed of HSP90AA1, argonaute RISC catalytic component 2 (AGO2) and miR-130b-3p. In a high-fat, high-cholesterol-induced hepatic lipid disorder E3 model, we confirmed that the hepatic expression of lnc-HC/miR-130b-3p negatively correlated with that of the target genes and was closely associated with liver triglycerides concentration. These findings provide a deeper understanding of the regulatory roles of lnc-HC in hepatic lipid metabolism and NAFLD development.

20.
Biomaterials ; 301: 122277, 2023 10.
Article in English | MEDLINE | ID: mdl-37597297

ABSTRACT

Intracerebral hemorrhage (ICH) remains the most lethal type of stroke, and effective clinical therapies that can speed up hematoma resolution after ICH are still lacking. While the beneficial effects of IL-10 on ICH recovery have been demonstrated, the clinical translation of IL-10 requires effective delivery methods by which sufficient IL-10 can be delivered to ICH-affected regions in the brain. Here we report the use of a phosphatidylserine (PS) liposome (PSL)-based nanoparticle system for microglia/macrophage-targeted delivery of IL-10 in ICH. We first prepared IL-10-conjugated PSL (PSL-IL10) and characterized their immunomodulating effects in vitro. Then we evaluated the therapeutic effects, including hematoma absorption, short-term outcomes, and neuroinflammation, of intranasally administered PSL-IL10 (3 µg IL-10 per mouse, 2 h post-ICH) in a collagenase-induced ICH mouse model. We also isolated microglia/macrophages from the mouse brains with ICH to analyze their morphology, phagocytosis ability, and polarization. Our study reveals that, 1) PSL-IL10 treatment resulted in significantly improved outcomes and accelerated hematoma resolution in the acute phase of ICH; 2) PSL-IL10 inhibited glial activation and down-regulated pro-inflammatory cytokine production; 3) PSL-IL10 induced Iba1+ cells with a stronger phagocytosis ability; 4) PSL-IL10 activated STAT3 and upregulated CD36 expression in microglia/macrophage. These findings collectively show that PSL-IL10 is a promising nanotherapeutic for effectively ameliorating ICH.


Subject(s)
Interleukin-10 , Microglia , Animals , Mice , Phosphatidylserines , Liposomes , Macrophages , Cerebral Hemorrhage/drug therapy , Hematoma
SELECTION OF CITATIONS
SEARCH DETAIL