Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(14): 7123-7133, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38501609

ABSTRACT

Filters made of graphene oxide (GO) are promising for purification of water and selective sieving of specific ions; while some results indicate the ionic radius as the discriminating factor in the sieving efficiency, the exact mechanism of sieving is still under debate. Furthermore, most of the reported GO filters are planar coatings with a simple geometry and an area much smaller than commercial water filters. Here, we show selective transport of different ions across GO coatings deposited on standard hollow fiber filters with an area >10 times larger than typical filters reported. Thanks to the fabrication procedure, we obtained a uniform coating on such complex geometry with no cracks or holes. Monovalent ions like Na+ and K+ can be transported through these filters by applying a low electric voltage, while divalent ions are blocked. By combining transport and adsorption measurements with molecular dynamics simulations and spectroscopic characterization, we unravel the ion sieving mechanism and demonstrate that it is mainly due to the interactions of the ions with the carboxylate groups present on the GO surface at neutral pH.

2.
Data Brief ; 33: 106345, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33024804

ABSTRACT

The reported data are related to a research paper entitled "Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation" [1]. Info about the formation and redox properties of the disulfide bridge of a protein is quite difficult to obtain and only in a few cases was it possible to observe a cyclic voltammetry (CV) signal [2,3]. Human cofilin-2 contains two cysteines (Cys39 and Cys80) which can be oxidized in suitable conditions and form a disulfide bridge [1]. For this purpose, CV measurements were carried out on human cofilin-2 WT and its mutant S3D immobilized on a gold electrode coated by an anionic self-assembled monolayer (SAM), after a pre-oxidation time which was fundamental for observing a CV signal relating to the oxidation/reduction process of the disulfide bridge of the proteins. The data include CV curves obtained with and without electrochemical pre-oxidation and after oxidation with H2O2. In addition, the plot of the cathodic peak current vs. electrochemical pre-oxidation time and the pH dependence of the formal potential (E°') are reported. The data obtained by CV measurements were used to determine the time required to form the disulfide bridge for the immobilized proteins and, consequently, to observe the CV signal, to calculate the E°' values and analyse the pH dependence of E°'. The electrochemical data were provided which will be useful for further electrochemical investigations regarding proteins bearing disulfide bridge(s) or cysteines prone to oxidation.

3.
Redox Biol ; 37: 101691, 2020 10.
Article in English | MEDLINE | ID: mdl-32863228

ABSTRACT

Cofilins are small protein of the actin depolymerizing family. Actin polymerization/depolymerization is central to a number of critical cellular physiological tasks making cofilin a key protein for several physiological functions of the cell. Cofilin activity is mainly regulated by phosphorylation on serine residue 3 making this post-translational modification key to the regulation of myofilament integrity. In fact, in this form, the protein segregates in myocardial aggregates in human idiopathic dilated cardiomyopathy. Since myofilament network is an early target of oxidative stress we investigated the molecular changes induced by oxidation on cofilin isoforms and their interplay with the protein phosphorylation state to get insight on whether/how those changes may predispose to early protein aggregation. Using different and complementary approaches we characterized the aggregation properties of cofilin-2 and its phosphomimetic variant (S3D) in response to oxidative stress in silico, in vitro and on isolated cardiomyocytes. We found that the phosphorylated (inactive) form of cofilin-2 is mechanistically linked to the formation of an extended network of fibrillar structures induced by oxidative stress via the formation of a disulfide bond between Cys39 and Cys80. Such phosphorylation-dependent effect is likely controlled by changes in the hydrogen bonding network involving Cys39. We found that the sulfide ion inhibits the formation of such structures. This might represent the mechanism for the protective effect of the therapeutic agent Na2S on ischemic injury.


Subject(s)
Amyloid , Cofilin 2 , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Amyloid/metabolism , Cofilin 2/genetics , Cofilin 2/metabolism , Humans , Oxidative Stress , Phosphorylation
4.
Bioelectrochemistry ; 136: 107628, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32795942

ABSTRACT

The Met80Ala and Met80Ala/Tyr67Ala variants of S. cerevisiae iso-1 cytochrome c (ycc) and their adducts with cardiolipin immobilized onto a gold electrode coated with a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol were studied through cyclic voltammetry and surface-enhanced resonance Raman spectroscopy (SERRS). The electroactive species - containing a six-coordinate His/His axially ligated heme and a five-coordinate His/- heme stable in the oxidized and reduced state, respectively - and the pseudoperoxidase activity match those found previously for the wt species and are only slightly affected by CL binding. Most importantly, the reduced His/- ligated form of these variants is able to catalytically reduce the nitrite ion, while electrode-immobilized wt ycc and other His/Met heme ligated variants under a variety of conditions are not. Besides the pseudoperoxidase and nitrite reductase functions, which are the most physiologically relevant abilities of these constructs, also axial heme ligation and the equilibria between conformers are strongly affected by the nature - hydrophobic vs. electrostatic - of the non-covalent interactions determining protein immobilization. Also affected are the catalytic activity changes induced by a given mutation as well as those due to partial unfolding due to CL binding. It follows that under the same solution conditions the structural and functional properties of immobilized ycc are surface-specific and therefore cannot be transferred from an immobilized system to another involving different interfacial protein-SAM interactions.


Subject(s)
Cytochromes c/metabolism , Electrodes , Enzymes, Immobilized/metabolism , Nitrite Reductases/metabolism , Peroxidases/metabolism , Saccharomyces cerevisiae/enzymology , Adsorption , Catalysis , Hydrophobic and Hydrophilic Interactions , Kinetics , Oxidation-Reduction , Spectrum Analysis, Raman/methods , Thermodynamics
5.
J Inorg Biochem ; 178: 70-86, 2018 01.
Article in English | MEDLINE | ID: mdl-29078150

ABSTRACT

Neuroglobin is a monomeric globin containing a six-coordinate heme b, expressed in the nervous system, which exerts an important neuroprotective role. In the human protein (hNgb), Cys46 and Cys55 form an intramolecular disulfide bond under oxidizing conditions, whose cleavage induces a helix-to-strand rearrangement of the CD loop that strengthens the bond between the heme iron and the distal histidine. Hence, it is conceivable that the intramolecular disulfide bridge modulates the functionality of human neuroglobin by controlling exogenous ligand binding. In this work, we investigated the influence of the Cys46/Cys55 disulfide bond on the redox properties and on the pH-dependent conformational equilibria of hNgb, using UV-vis spectroelectrochemistry, cyclic voltammetry, electronic absorption spectroscopy and magnetic circular dichroism (MCD). We found that the SS bridge significantly affects the heme Fe(III) to Fe(II) reduction enthalpy (ΔH°'rc) and entropy (ΔS°'rc), mostly as a consequence of changes in the reduction-induced solvent reorganization effects, without affecting the axial ligand-binding interactions and the polarity and electrostatics of the heme environment. Between pH3 and 12, the electronic properties of the heme of ferric hNgb are sensitive to five acid-base equilibria, which are scarcely affected by the Cys46/Cys55 disulfide bridge. The equilibria occurring at extreme pH values induce heme release, while those occurring between pH5 and 10 alter the electronic properties of the heme without modifying its axial coordination and low spin state. They involve the sidechains of non-coordinating aminoacids close to the heme and at least one heme propionate.


Subject(s)
Cysteine/chemistry , Disulfides/chemistry , Globins/chemistry , Nerve Tissue Proteins/chemistry , Spectrum Analysis , Electrochemistry , Globins/analysis , Heme/chemistry , Humans , Hydrogen-Ion Concentration , Models, Molecular , Nerve Tissue Proteins/analysis , Neuroglobin , Oxidation-Reduction , Spectrometry, Fluorescence , Thermodynamics
7.
Sci Rep ; 6: 35865, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27775057

ABSTRACT

The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/toxicity , Protein Aggregates , Protein Aggregation, Pathological , Protein Folding , Protein Multimerization , Humans , Kinetics , Microscopy, Atomic Force , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...