Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 18(10): 3004-3014, 2012 Oct.
Article in English | MEDLINE | ID: mdl-28741835

ABSTRACT

Nitrogen fixation by diazotrophic cyanobacteria is a critical source of new nitrogen to the oligotrophic surface ocean. Research to date indicates that some diazotroph groups may increase nitrogen fixation under elevated pCO2 . To test this in natural plankton communities, four manipulation experiments were carried out during two voyages in the South Pacific (30-35o S). High CO2 treatments, produced using 750 ppmv CO2 to adjust pH to 0.2 below ambient, and 'Greenhouse' treatments (0.2 below ambient pH and ambient temperature +3 °C), were compared with Controls in trace metal clean deckboard incubations in triplicate. No significant change was observed in nitrogen fixation in either the High CO2 or Greenhouse treatments over 5 day incubations. qPCR measurements and optical microscopy determined that the diazotroph community was dominated by Group A unicellular cyanobacteria (UCYN-A), which may account for the difference in response of nitrogen fixation under elevated CO2 to that reported previously for Trichodesmium. This may reflect physiological differences, in that the greater cell surface area:volume of UCYN-A and its lack of metabolic pathways involved in carbon fixation may confer no benefit under elevated CO2 . However, multiple environmental controls may also be a factor, with the low dissolved iron concentrations in oligotrophic surface waters limiting the response to elevated CO2 . If nitrogen fixation by UCYN-A is not stimulated by elevated pCO2 , then future increases in CO2 and warming may alter the regional distribution and dominance of different diazotroph groups, with implications for dissolved iron availability and new nitrogen supply in oligotrophic regions.

2.
PLoS One ; 6(12): e28989, 2011.
Article in English | MEDLINE | ID: mdl-22174940

ABSTRACT

During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N(2) fixation in the North Atlantic.


Subject(s)
Nitrogen Fixation/physiology , Tropical Climate , Atlantic Ocean , Cyanobacteria/genetics , Genes, Bacterial/genetics , Geography , Global Warming , Models, Biological , Nitrogen Fixation/genetics , Regression Analysis , Salinity , Seasons , Ships , Temperature
3.
Appl Environ Microbiol ; 74(6): 1922-31, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18245263

ABSTRACT

Understanding the factors that influence the distribution and abundance of marine diazotrophs is important in order to assess their role in the oceanic nitrogen cycle. Environmental DNA samples from four cruises to the North Atlantic Ocean, covering a sampling area of 0 degrees N to 42 degrees N and 67 degrees W to 13 degrees W, were analyzed for the presence and amount of seven nifH phylotypes using real-time quantitative PCR and TaqMan probes. The cyanobacterial phylotypes dominated in abundance (94% of all nifH copies detected) and were the most widely distributed. The filamentous cyanobacterial type, which included both Trichodesmium and Katagnymene, was the most abundant (51%), followed by group A, an uncultured unicellular cyanobacterium (33%), and gamma A, an uncultured gammaproteobacterium (6%). Group B, unicellular cyanobacterium Crocosphaera, and group C Cyanothece-like phylotypes were not often detected (6.9% and 2.3%, respectively), but where present, could reach high concentrations. Gamma P, another uncultured gammaproteobacterium, was seldom detected (0.5%). Water temperature appeared to influence the distribution of many nifH phylotypes. Very high (up to 1 x 10(6) copies liter(-1)) nifH concentrations of group A were detected in the eastern basin (25 to 17 degrees N, 27 to 30 degrees W), where the temperature ranged from 20 to 23 degrees C. The highest concentrations of filamentous phylotypes were measured between 25 and 30 degrees C. The uncultured cluster III phylotype was uncommon (0.4%) and was associated with mean water temperatures of 18 degrees C. Diazotroph abundance was highest in regions where modeled average dust deposition was between 1 and 2 g/m(2)/year.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/genetics , Oxidoreductases/genetics , Seawater/microbiology , Atlantic Ocean , Cyanobacteria/classification , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Nitrogen Fixation/genetics , Polymerase Chain Reaction , Temperature , Water Microbiology
4.
Appl Environ Microbiol ; 71(12): 7910-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332767

ABSTRACT

To understand the structure of marine diazotrophic communities in the tropical and subtropical Atlantic Ocean, the molecular diversity of the nifH gene was studied by nested PCR amplification using degenerate primers, followed by cloning and sequencing. Sequences of nifH genes were amplified from environmental DNA samples collected during three cruises (November-December 2000, March 2002, and October-November 2002) covering an area between 0 to 28.3 degrees N and 56.6 to 18.5 degrees W. A total of 170 unique sequences were recovered from 18 stations and 23 depths. Samples from the November-December 2000 cruise contained both unicellular and filamentous cyanobacterial nifH phylotypes, as well as gamma-proteobacterial and cluster III sequences, so far only reported in the Pacific Ocean. In contrast, samples from the March 2002 cruise contained only phylotypes related to the uncultured group A unicellular cyanobacteria. The October-November 2002 cruise contained both filamentous and unicellular cyanobacterial and gamma-proteobacterial sequences. Several sequences were identical at the nucleotide level to previously described environmental sequences from the Pacific Ocean, including group A sequences. The data suggest a community shift from filamentous cyanobacteria in surface waters to unicellular cyanobacteria and/or heterotrophic bacteria in deeper waters. With one exception, filamentous cyanobacterial nifH sequences were present within temperatures ranging between 26.5 and 30 degrees C and where nitrate was undetectable. In contrast, nonfilamentous nifH sequences were found throughout a broader temperature range, 15 to 30 degrees C, more often in waters with temperature of <26 degrees C, and were sometimes recovered from waters with detectable nitrate concentrations.


Subject(s)
Bacteria/classification , Biodiversity , Tropical Climate , Water Microbiology , Atlantic Ocean , Bacteria/genetics , Bacteria/isolation & purification , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Polymerase Chain Reaction , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...