Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 297
1.
Acta Oncol ; 63: 398-410, 2024 May 28.
Article En | MEDLINE | ID: mdl-38804839

BACKGROUND AND PURPOSE: Calcium electroporation (CaEP) involves injecting calcium into tumour tissues and using electrical pulses to create membrane pores that induce cell death. This study assesses resultant immune responses and histopathological changes in patients with cutaneous metastases. PATIENTS/MATERIALS AND METHODS: The aimed cohort comprised 24 patients with metastases exceeding 5 mm. Tumours were treated once with CaEP (day 0) or twice (day 28). Biopsies were performed on days 0 and 2, with additional samples on days 7, 28, 30, 35, 60, and 90 if multiple tumours were treated. The primary endpoint was the change in tumour-infiltrating lymphocytes (TILs) two days post-treatment, with secondary endpoints evaluating local and systemic immune responses via histopathological analysis of immune markers, necrosis, and inflammation. RESULTS: Seventeen patients, with metastases primarily from breast cancer (14 patients), but also lung cancer (1), melanoma (1), and urothelial cancer (1), completed the study. Of the 49 lesions treated, no significant changes in TIL count or PD-L1 expression were observed. However, there was substantial necrosis and a decrease in FOXP3-expression (p = 0.0025) noted, with a slight increase in CD4+ cells but no changes in CD3, CD8, or CD20 expressions. Notably, four patients showed reduced tumour invasiveness, including one case of an abscopal response. INTERPRETATION: This exploratory study indicates that CaEP can be an effective anti-tumour therapy potentially enhancing immunity. Significant necrosis and decreased regulatory lymphocytes were observed, although TIL count remained unchanged. Several patients exhibited clinical signs of immune response following treatment.


Lymphocytes, Tumor-Infiltrating , Skin Neoplasms , Tumor Microenvironment , Humans , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Female , Lymphocytes, Tumor-Infiltrating/immunology , Male , Aged , Middle Aged , Tumor Microenvironment/immunology , Calcium/metabolism , Aged, 80 and over , Electroporation/methods , Adult , Necrosis/immunology , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Electrochemotherapy/methods
2.
Virology ; 596: 110117, 2024 Aug.
Article En | MEDLINE | ID: mdl-38797064

MicroRNAs (miRNAs) contribute to post-transcriptional modulation of the host response during influenza A virus (IAV) infection and may be involved in shaping disease severity. Differential disease severity was achieved in two groups of pigs by immunization of one group with a commercial swine IAV vaccine prior to heterologous IAV (H1N2) challenge of both groups. Lung tissue was harvested 1, 3, and 14 days after challenge and miRNA expression was quantified. Gene Ontology term enrichment analysis was employed to examine the functional relevance of genes potentially regulated by differentially expressed miRNAs in pigs with varying degrees of disease severity following IAV infection. Results suggested that the miRNA response associated with less severe disease may modulate host mechanisms essential for viral life cycle, e.g. transcription, translation, and protein trafficking. During more severe disease, miRNA-mediated regulation may focus on dampening virus-specific processes e.g. virion assembly and viral protein processing, and controlling host metabolism.


Influenza A Virus, H1N2 Subtype , Influenza Vaccines , Lung , MicroRNAs , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/immunology , Lung/virology , Lung/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/immunology , Swine Diseases/virology , Swine Diseases/immunology , Immunization , Gene Expression Profiling
3.
J Migr Health ; 9: 100229, 2024.
Article En | MEDLINE | ID: mdl-38633280

In line with the peer reviewers comments, the authors have added highlights in stead of an abstract. It was felt that it was better able to capture the findings and is more in line with the paper's target audience.

4.
J Migr Health ; 9: 100228, 2024.
Article En | MEDLINE | ID: mdl-38577626

In this commentary, we advocate for the wider implementation of integrated care models for NCDs within humanitarian preparedness, response, and resilience efforts. Since experience and evidence on integrated NCD care in humanitarian settings is limited, we discuss potential benefits, key lessons learned from other settings, and lessons from the integration of other conditions that may be useful for stakeholders considering an integrated model of NCD care. We also introduce our ongoing project in North Lebanon as a case example currently undergoing parallel tracks of program implementation and process evaluation that aims to strengthen the evidence base on implementing an integrated NCD care model in a crisis setting.

5.
Front Vet Sci ; 11: 1358995, 2024.
Article En | MEDLINE | ID: mdl-38450025

Exploring the risk factors of avian influenza (AI) occurrence helps us to monitor and control the disease. Since late 2020, the number of avian influenza outbreaks in domestic and wild birds has increased in most European countries, including Denmark. This study was conducted to identify potential risk factors for wild birds and poultry during the epidemic in 2020/2021 in Denmark. Using Danish AI surveillance data of actively surveyed poultry and passively surveyed wild birds from June 2020 to May 2021, we calculated geographical attributes for bird locations and assessed the potential risk factors of AI detections using logistic regression analyses. 4% of actively surveyed poultry and 39% of passively surveyed wild birds were detected with AI circulating or ongoing at the time. Of these, 10 and 99% tested positive for the H5/H7 AI subtypes, respectively. Our analyses did not find any statistically significant risk factors for actively surveyed poultry within the dataset. For passively surveyed wild birds, bird species belonging to the Anseriformes order had a higher risk of being AI virus positive than five other taxonomic bird orders, and Galliformes were of higher risk than two other taxonomic bird orders. Besides, every 1 km increase in the distance to wetlands was associated with a 5.18% decrease in the risk of being AI positive (OR (odds ratio) 0.95, 95% CI 0.91, 0.99), when all other variables were kept constant. Overall, bird orders and distance to wetlands were associated with the occurrence of AI. The findings may provide targets for surveillance strategies using limited resources and assist in risk-based surveillance during epidemics.

6.
Vet Microbiol ; 291: 110032, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430715

In recent years, it has become apparent that imbalances in the gastrointestinal system can impact organs beyond the intestine such as the lungs. Given the established ability of probiotics to modulate the immune system by interacting with gastrointestinal cells, our research aimed to investigate whether administering the probiotic strain Bacillus subtilis-597 could mitigate the outcome of influenza virus infection in pigs. Pigs were fed a diet either with or without the probiotic strain B. subtilis-597 for 14 days before being intranasally inoculated with a swine influenza A H1N2 strain (1 C.2 lineage). Throughout the study, we collected fecal samples, blood samples, and nasal swabs to examine viral shedding and immune gene expression. After seven days of infection, the pigs were euthanized, and lung and ileum tissues were collected for gene expression analysis and pathological examination. Our findings indicate that the administration of B. subtilis-597 exhibit potential in reducing lung lesions, possibly attributable to a general suppression of the immune system as indicated by reduced C-reactive protein (CRP) levels in serum, decreased expression of interferon-stimulated genes (ISGs), and localized reduction of the inflammatory marker serum amyloid A (SAA) in ileum tissue. Notably, the immune-modulatory effects of B. subtilis-597 appeared to be unrelated to the gastrointestinal microbiota, as the composition remained unaltered by both the influenza infection and the administration of B. subtilis-597.


Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Probiotics , Swine Diseases , Swine , Animals , Humans , Bacillus subtilis , Probiotics/pharmacology , Orthomyxoviridae Infections/veterinary , Inflammation/veterinary , Lung/pathology
7.
Eur J Med Genet ; 68: 104920, 2024 Apr.
Article En | MEDLINE | ID: mdl-38336121

T-Box Transcription Factor 5 (TBX5) variants are associated with Holt-Oram syndrome. Holt-Oram syndrome display phenotypic variability, regarding upper limb defects, congenital heart defects, and arrhythmias. To investigate the genotype-phenotype relationship between TBX5 variants and cardiac disease, we performed a systematic review of the literature. Through the systematic review we identified 108 variants in TBX5 associated with a cardiac phenotype in 277 patients. Arrhythmias were more frequent in patients with a missense variant (48% vs 30%, p = 0.009) and upper limb abnormalities were more frequent in patients with protein-truncating variants (85% vs 64%, p = 0.0008). We found clustering of missense variants in the T-box domain. Furthermore, we present a family with atrial septal defects. By whole exome sequencing, we identified a novel missense variant p.Phe232Leu in TBX5. The cardiac phenotype included atrial septal defect, arrhythmias, heart failure, and dilated cardiomyopathy. Clinical examination revealed subtle upper limb abnormalities. Thus, the family corresponds to the diagnostic criteria of Holt-Oram syndrome. We provide an overview of cardiac phenotypes associated with TBX5 variants and show an increased risk of arrhythmias associated to missense variants compared to protein-truncating variants. We report a novel missense variant in TBX5 in a family with an atypical Holt-Oram syndrome phenotype.


Abnormalities, Multiple , Heart Defects, Congenital , Heart Septal Defects, Atrial , Lower Extremity Deformities, Congenital , Upper Extremity Deformities, Congenital , Humans , Heart Defects, Congenital/genetics , Heart Defects, Congenital/diagnosis , Heart Septal Defects, Atrial/genetics , Lower Extremity Deformities, Congenital/genetics , Phenotype , T-Box Domain Proteins/genetics , Upper Extremity Deformities, Congenital/genetics , Upper Extremity Deformities, Congenital/diagnosis
8.
Clin Transl Med ; 14(2): e1565, 2024 02.
Article En | MEDLINE | ID: mdl-38328889

BACKGROUND: Heart failure due to myocardial infarction (MI) involves fibrosis driven by epicardium-derived cells (EPDCs) and cardiac fibroblasts, but strategies to inhibit and provide cardio-protection remains poor. The imprinted gene, non-canonical NOTCH ligand 1 (Dlk1), has previously been shown to mediate fibrosis in the skin, lung and liver, but very little is known on its effect in the heart. METHODS: Herein, human pericardial fluid/plasma and tissue biopsies were assessed for DLK1, whereas the spatiotemporal expression of Dlk1 was determined in mouse hearts. The Dlk1 heart phenotype in normal and MI hearts was assessed in transgenic mice either lacking or overexpressing Dlk1. Finally, in/ex vivo cell studies provided knowledge on the molecular mechanism. RESULTS: Dlk1 was demonstrated in non-myocytes of the developing human myocardium but exhibited a restricted pericardial expression in adulthood. Soluble DLK1 was twofold higher in pericardial fluid (median 45.7 [34.7 (IQR)) µg/L] from cardiovascular patients (n = 127) than in plasma (median 26.1 µg/L [11.1 (IQR)]. The spatial and temporal expression pattern of Dlk1 was recapitulated in mouse and rat hearts. Similar to humans lacking Dlk1, adult Dlk1-/- mice exhibited a relatively mild developmental, although consistent cardiac phenotype with some abnormalities in heart size, shape, thorax orientation and non-myocyte number, but were functionally normal. However, after MI, scar size was substantially reduced in Dlk1-/- hearts as compared with Dlk1+/+ littermates. In line, high levels of Dlk1 in transgenic mice Dlk1fl/fl xWT1GFPCre and Dlk1fl/fl xαMHCCre/+Tam increased scar size following MI. Further mechanistic and cellular insight demonstrated that pericardial Dlk1 mediates cardiac fibrosis through epithelial to mesenchymal transition (EMT) of the EPDC lineage by maintaining Integrin ß8 (Itgb8), a major activator of transforming growth factor ß and EMT. CONCLUSIONS: Our results suggest that pericardial Dlk1 embraces a, so far, unnoticed role in the heart augmenting cardiac fibrosis through EMT. Monitoring DLK1 levels as well as targeting pericardial DLK1 may thus offer new venues for cardio-protection.


Epithelial-Mesenchymal Transition , Myocardial Infarction , Adult , Animals , Humans , Mice , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cicatrix/metabolism , Cicatrix/pathology , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Ligands , Mice, Transgenic , Myocardial Infarction/genetics , Pericardium/metabolism , Thorax/pathology
9.
Zoonoses Public Health ; 71(3): 314-323, 2024 May.
Article En | MEDLINE | ID: mdl-38362732

AIMS: Outbreaks of avian influenza in poultry farms are currently increasing in frequency, with devastating consequences for animal welfare, farmers and supply chains. Some studies have documented the direct spread of the avian influenza virus between farms. Prevention of spread between farms relies on biosecurity surveillance and control measures. However, the evolution of an outbreak on a farm might vary depending on the virus strain and poultry species involved; this would have important implications for surveillance systems, epidemiological investigations and control measures. METHODS AND RESULTS: In this study, we utilized existing parameter estimates from the literature to evaluate the predicted course of an epidemic in a standard poultry flock with 10,000 birds. We used a stochastic SEIR simulation model to simulate outbreaks in different species and with different virus subtypes. The simulations predicted large differences in the duration and severity of outbreaks, depending on the virus subtypes. For both turkeys and chickens, outbreaks with HPAI were of shorter duration than outbreaks with LPAI. In outbreaks involving the infection of chickens with different virus subtypes, the shortest epidemic involved H7N7 and HPAIV H5N1 (median duration of 9 and 17 days, respectively) and the longest involved H5N2 (median duration of 68 days). The most severe outbreaks (number of chickens infected) were predicted for H5N1, H7N1 and H7N3 virus subtypes, and the least severe for H5N2 and H7N7, in which outbreaks for the latter subtype were predicted to develop most slowly. CONCLUSIONS: These simulation results suggest that surveillance of certain subtypes of avian influenza virus, in chicken flocks in particular, needs to be sensitive and timely if infection is to be detected with sufficient time to implement control measures. The variability in the predictions highlights that avian influenza outbreaks are different in severity, speed and duration, so surveillance and disease response need to be nuanced and fit the specific context of poultry species and virus subtypes.


Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N2 Subtype , Influenza A Virus, H7N1 Subtype , Influenza A Virus, H7N7 Subtype , Influenza in Birds , Poultry Diseases , Animals , Poultry , Influenza A Virus, H7N3 Subtype , Chickens , Disease Outbreaks/veterinary , Poultry Diseases/epidemiology
10.
J Gen Virol ; 105(1)2024 01.
Article En | MEDLINE | ID: mdl-38289661

During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.


Galliformes , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Animals , Virulence , Chickens
11.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article En | MEDLINE | ID: mdl-38203829

The intrahippocampal kainic acid (IHKA) mouse model is an extensively used in vivo model to investigate the pathophysiology of mesial temporal lobe epilepsy (mTLE) and to develop novel therapies for drug-resistant epilepsy. It is characterized by profound hippocampal sclerosis and spontaneously occurring seizures with a major role for the injected damaged hippocampus, but little is known about the excitability of specific subregions. The purpose of this study was to electrophysiologically characterize the excitability of hippocampal subregions in the chronic phase of the induced epilepsy in the IHKA mouse model. We recorded field postsynaptic potentials (fPSPs) after electrical stimulation in the CA1 region and in the dentate gyrus (DG) of hippocampal slices of IHKA and healthy mice using a multielectrode array (MEA). In the DG, a significantly steeper fPSP slope was found, reflecting higher synaptic strength. Population spikes were more prevalent with a larger spatial distribution in the IHKA group, reflecting a higher degree of granule cell output. Only minor differences were found in the CA1 region. These results point to increased neuronal excitability in the DG but not in the CA1 region of the hippocampus of IHKA mice. This method, in which the excitability of hippocampal slices from IHKA mice is investigated using a MEA, can now be further explored as a potential new model to screen for new interventions that can restore DG function and potentially lead to novel therapies for mTLE.


Epilepsy, Temporal Lobe , Animals , Mice , Epilepsy, Temporal Lobe/chemically induced , Kainic Acid , Seizures , Disease Models, Animal , Dentate Gyrus
12.
Virus Res ; 340: 199304, 2024 02.
Article En | MEDLINE | ID: mdl-38142890

Influenza A viruses (IAVs) originate from wild birds but have on several occasions jumped host barriers and are now also circulating in humans and mammals. The IAV host receptors (glycans with galactose linked to a sialic acid (SA) in an α2,3 or α2,6 linkage) are crucial host factors restricting inter-species transmission. In general, avian-origin IAVs show a preference for SA-α2,3 (avian receptor), whereas IAVs isolated from humans and pigs prefer SA-α2,6 (human receptor). N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two major SAs. Neu5Ac is expressed in all species, whereas Neu5Gc is only expressed in a limited number of domestic species such as pigs and horses, but not in humans. Despite that previous studies have shown that the IAV host receptor distribution appears to be similar in pigs and humans, none of these studies have investigated the expression of Neu5Gc-α2,6 in situ in porcine tissues. Thus, the aim of this study was to elucidate the distribution of IAV host receptors expressed in the porcine respiratory tract and relate the expression to the viral tropism of diverse host-adapted IAVs. The IAV receptor (SA-α2,3 and SA-α2,6) distribution and the presence of specifically Neu5Gc-α2,6 in the porcine nasal, tracheal, and lung tissues was investigated by lectin histochemistry. Furthermore, IAV immunohistochemistry was performed on tissues from pigs experimentally infected with IAVs, either adapted to pigs or humans, to investigate the significance of the IAV host receptors and the tropism of the diverse host-adapted IAVs. We document for the first time the expression of the avian receptor on the surface of the porcine nasal mucosa and an equal expression of Neu5Ac-α2,6 and Neu5Gc-α2,6 on the surface of the tracheal epithelium and alveoli. In all IAV-infected pigs, we found a low amount of IAV-positive cells in the trachea despite a high expression of the human receptor. Cumulatively, these findings suggest that optimal IAV replication involves a complex interplay between the viruses and their host receptors and that there might be other less clearly defined host factors that determine the site of replication.


Influenza A virus , Influenza, Human , Orthomyxoviridae , Animals , Influenza A virus/genetics , Influenza A virus/metabolism , N-Acetylneuraminic Acid/metabolism , Nasal Mucosa , Receptors, Virus/genetics , Receptors, Virus/metabolism , Swine , Trachea
13.
PLoS Pathog ; 19(12): e1011838, 2023 Dec.
Article En | MEDLINE | ID: mdl-38048355

Influenza A viruses are RNA viruses that cause epidemics in humans and are enzootic in the pig population globally. In 2009, pig-to-human transmission of a reassortant H1N1 virus (H1N1pdm09) caused the first influenza pandemic of the 21st century. This study investigated the infection dynamics, pathogenesis, and lesions in pigs and ferrets inoculated with natural isolates of swine-adapted, human-adapted, and "pre-pandemic" H1N1pdm09 viruses. Additionally, the direct-contact and aerosol transmission properties of the three H1N1pdm09 isolates were assessed in ferrets. In pigs, inoculated ferrets, and ferrets infected by direct contact with inoculated ferrets, the pre-pandemic H1N1pdm09 virus induced an intermediary viral load, caused the most severe lesions, and had the highest clinical impact. The swine-adapted H1N1pdm09 virus induced the highest viral load, caused intermediary lesions, and had the least clinical impact in pigs. The human-adapted H1N1pdm09 virus induced the highest viral load, caused the mildest lesions, and had the least clinical impact in ferrets infected by direct contact. The discrepancy between viral load and clinical impact presumably reflects the importance of viral host adaptation. Interestingly, the swine-adapted H1N1pdm09 virus was transmitted by aerosols to two-thirds of the ferrets. Further work is needed to assess the risk of human-to-human aerosol transmission of swine-adapted H1N1pdm09 viruses.


Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Swine , Influenza A Virus, H1N1 Subtype/genetics , Ferrets , Respiratory Aerosols and Droplets , Reassortant Viruses/genetics
14.
Neurobiol Dis ; 189: 106355, 2023 Dec.
Article En | MEDLINE | ID: mdl-37977430

The locus coeruleus (LC) is a small brainstem nucleus and is the sole source of noradrenaline in the neocortex, hippocampus and cerebellum. Noradrenaline is a powerful neuromodulator involved in the regulation of excitability and plasticity of large-scale brain networks. In this study, we performed a detailed assessment of the activity of locus coeruleus neurons and changes in noradrenergic transmission during acute hippocampal seizures evoked with perforant path stimulation, using state-of-the-art methodology. Action potentials of LC neurons, of which some were identified by means of optogenetics, were recorded in anesthetized rats using a multichannel high-density electrophysiology probe. The seizure-induced change in firing rate differed between LC neurons: 55% of neurons decreased in firing rate during seizures, while 28% increased their firing rate. Topographic analysis of multi-unit activity over the electrophysiology probe showed a topographic clustering of neurons that were inhibited or excited during seizures. Changes in hippocampal noradrenaline transmission during seizures were assessed using a fluorescent biosensor for noradrenaline, GRABNE2m, in combination with fiber photometry, in both anesthetized and awake rats. Although our neuronal recordings indicated both inhibition and excitation of LC neurons during seizures, a consistent release of noradrenaline was observed. Concentrations of noradrenaline increased at seizure onset and decreased during or shortly after the seizure. In conclusion, this study showed consistent but heterogeneous modulation of LC neurons and a consistent time-locked release of hippocampal noradrenaline during acute hippocampal seizures.


Locus Coeruleus , Norepinephrine , Rats , Animals , Norepinephrine/pharmacology , Seizures , Hippocampus , Neurons
15.
Vaccine ; 41(49): 7387-7394, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37932134

Currently, SARS-CoV-2 have been detected in farmed mink in 13 different countries. Due to the high susceptibility and transmissibility among mink, great concerns of mink serving as a reservoir to generate novel variants with unknown virulence and antigenic properties arose. These concerns have consequently resulted in entire mink productions being culled and banned. This study investigates the post-vaccination antibody response in the Canadian farmed mink vaccinated with a commercial Index spike protein-based vaccine, approved for use in cats, and compares the antibody response to that observed post infection in Danish farmed mink. Blood samples were obtained from 50 mink at the Canadian Centre for Fur Animal Research (CCFAR), Dalhousie University (Truro, Canada). The sera were initially analyzed for antibodies by enzyme-linked immunosorbent assay (ELISA), and selected sera was subsequently tested in a virus neutralization tests. The levels of neutralizing antibodies were evaluated for an ancestral D614G strain and a recent circulating SARS-CoV-2 variant of concern (Omicron BA.4). The results revealed that the vaccine induced a strong antibody response in mink by reaching antibody titer levels of up to 1:12800 in the ELISA. Moreover, high levels of neutralizing antibodies were obtained, and despite the great level of genetic differences between the ancestral and Omicron BA.4 strains, the vaccinated mink showed high levels of cross-reacting neutralizing antibodies. Interestingly, the antibody levels towards SARS-CoV-2 in the Canadian vaccinated mink were significantly higher than observed in recently SARS-CoV-2 infected Danish mink and equal to anamnestic responses following re-infection. In conclusion, the vaccine used in the Canadian farmed mink was able to induce a strong and broad-reacting antibody response in mink, which could limit the spread of SARS-CoV-2 in farmed mink and thereby reduce the risk of mink serving as a SARS-CoV-2 reservoir for human infections.


COVID-19 , Vaccines , Humans , Animals , Cats , Antibody Formation , Canada , Mink , SARS-CoV-2 , Vaccination/veterinary , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
16.
BMC Public Health ; 23(1): 1928, 2023 10 05.
Article En | MEDLINE | ID: mdl-37798691

BACKGROUND: Preventive health checks are assumed to reduce the risk of the development of cardio-metabolic disease in the long term. Although no solid evidence of effect is shown on health checks targeting the general population, studies suggest positive effects if health checks target people or groups identified at risk of disease. The aim of this study is to explore why and how targeted preventive health checks work, for whom they work, and under which circumstances they can be expected to work. METHODS: The study is designed as a realist synthesis that consists of four phases, each including collection and analysis of empirical data: 1) Literature search of systematic reviews and meta-analysis, 2) Interviews with key-stakeholders, 3) Literature search of qualitative studies and grey literature, and 4) Workshops with key stakeholders and end-users. Through the iterative analysis we identified the interrelationship between contexts, mechanisms, and outcomes to develop a program theory encompassing hypotheses about targeted preventive health checks. RESULTS: Based on an iterative analysis of the data material, we developed a final program theory consisting of seven themes; Target group; Recruitment and participation; The encounter between professional and participants; Follow-up activities; Implementation and operation; Shared understanding of the intervention; and Unintended side effects. Overall, the data material showed that targeted preventive health checks need to be accessible, recognizable, and relevant for the participants' everyday lives as well as meaningful to the professionals involved. The results showed that identifying a target group, that both benefit from attending and have the resources to participate pose a challenge for targeted preventive health check interventions. This challenge illustrates the importance of designing the recruitment and intervention activities according to the target groups particular life situation. CONCLUSION: The results indicate that a one-size-fits-all model of targeted preventive health checks should be abandoned, and that intervention activities and implementation depend on for whom and under which circumstances the intervention is initiated. Based on the results we suggest that future initiatives conduct thorough needs assessment as the basis for decisions about where and how the preventive health checks are implemented.


Preventive Health Services , Humans , Qualitative Research , Systematic Reviews as Topic
18.
Influenza Other Respir Viruses ; 17(10): e13208, 2023 10.
Article En | MEDLINE | ID: mdl-37850154

In 2021 and 2022, clade 2.3.4.4b H5Nx high pathogenicity avian influenza viruses were detected in one harbor seal and in one adult and three fox cubs in Denmark. The viruses were closely related to contemporary viruses found in Europe, and some had obtained amino acid substitutions related to mammalian adaptation. Notably, the virus distribution appeared to have been different in the infected fox cubs, as one exclusively tested positive for the presence of HPAIV in the brain and the other two only in the lung. Collectively, these findings stress the need for increased disease surveillance of wild and farmed mammals.


Influenza A virus , Influenza in Birds , Phoca , Animals , Influenza in Birds/epidemiology , Foxes , Virulence , Influenza A virus/genetics , Denmark/epidemiology , Phylogeny , Animals, Wild
19.
Sci Rep ; 13(1): 15396, 2023 09 16.
Article En | MEDLINE | ID: mdl-37717056

Avian influenza in wild birds and poultry flocks constitutes a problem for animal welfare, food security and public health. In recent years there have been increasing numbers of outbreaks in Europe, with many poultry flocks culled after being infected with highly pathogenic avian influenza (HPAI). Continuous monitoring is crucial to enable timely implementation of control to prevent HPAI spread from wild birds to poultry and between poultry flocks within a country. We here utilize readily available public surveillance data and time-series models to predict HPAI detections within European countries and show a seasonal shift that happened during 2021-2022. The output is models capable of monitoring the weekly risk of HPAI outbreaks, to support decision making.


Influenza in Birds , Animals , Influenza in Birds/epidemiology , Seasons , Disease Outbreaks/veterinary , Public Health , Europe/epidemiology
20.
Porcine Health Manag ; 9(1): 33, 2023 Jul 11.
Article En | MEDLINE | ID: mdl-37434248

BACKGROUND: Recently, in-feed medicinal zinc has been phased out in pig production in the European Union. This makes updated knowledge about porcine post-weaning diarrhea (PWD) crucial. The objectives of the present study were to investigate (i) the clinical presentation of PWD in pigs housed in Danish herds that did not use medicinal zinc, specifically the prevalence of diarrhea and whether PWD was associated to clinical signs of dehydration or altered body temperature; (ii) which microorganism are associated to PWD; and iii) whether measurements of the fecal pH have a potential to be used diagnostically to differentiate between infectious etiologies in cases of PWD. RESULTS: The prevalence of diarrhea varied considerably between the outbreaks in the nine studied herds (median = 0.58, range = 0.10; 0.94). In a cross-sectional design (n = 923), diarrhea was associated with reduced rectal temperature and alkaline feces. Diarrhea was also associated with observably reduced skin elasticity, possibly indicating dehydration. In both diarrheic case pigs (n = 87) and control pigs (n = 86), the presence of Brachyspira pilosicoli, Clostridium perfringens, Cryptosporidium spp., Cystoisopora suis, enterotoxigenic Escherichia coli, Lawsonia intracellularis, porcine circovirus types 2 and 3, rotavirus A, B, C, and H, Samonella enterica spp. enterica, and Trichuris suis was described. PWD was associated with high levels of enterotoxigenic E. coli shedding (odds ratio versus no E. coli detection = 4.79 [CI 1.14; 12.62]). Diarrhea was associated with high levels of rotavirus A shedding (odds ratio versus no/low rotavirus A = 3.80 [CI 1.33; 7.97]). The association between microbiological findings in diarrheic pigs and fecal pH was negligible. CONCLUSIONS: Enterotoxigenic E. coli was confirmed to be a cause of PWD; however, cases of PWD where enterotoxigenic E. coli was not detected in high levels occurred commonly, and this adds to the increasing evidence suggesting that PWD is not necessarily a result of enteric colibacillosis. Rotaviral enteritis might be a differential diagnosis of PWD. pH-measurements cannot be used to differentiate between differential diagnoses for PWD.

...