Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: mdl-34039610

ABSTRACT

Circadian rhythm synchronizes each body function with the environment and regulates physiology. Disruption of normal circadian rhythm alters organismal physiology and increases disease risk. Recent epidemiological data and studies in model organisms have shown that maternal circadian disruption is important for offspring health and adult phenotypes. Less is known about the role of paternal circadian rhythm for offspring health. Here, we disrupted circadian rhythm in male mice by night-restricted feeding and showed that paternal circadian disruption at conception is important for offspring feeding behavior, metabolic health, and oscillatory transcription. Mechanistically, our data suggest that the effect of paternal circadian disruption is not transferred to the offspring via the germ cells but initiated by corticosterone-based parental communication at conception and programmed during in utero development through a state of fetal growth restriction. These findings indicate paternal circadian health at conception as a newly identified determinant of offspring phenotypes.


Subject(s)
Circadian Rhythm , Animals , Circadian Rhythm/genetics , Male , Mice , Phenotype
2.
Nat Commun ; 12(1): 2999, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016966

ABSTRACT

The proper functional interaction between different tissues represents a key component in systemic metabolic control. Indeed, disruption of endocrine inter-tissue communication is a hallmark of severe metabolic dysfunction in obesity and diabetes. Here, we show that the FNDC4-GPR116, liver-white adipose tissue endocrine axis controls glucose homeostasis. We found that the liver primarily controlled the circulating levels of soluble FNDC4 (sFNDC4) and lowering of the hepatokine FNDC4 led to prediabetes in mice. Further, we identified the orphan adhesion GPCR GPR116 as a receptor of sFNDC4 in the white adipose tissue. Upon direct and high affinity binding of sFNDC4 to GPR116, sFNDC4 promoted insulin signaling and insulin-mediated glucose uptake in white adipocytes. Indeed, supplementation with FcsFNDC4 in prediabetic mice improved glucose tolerance and inflammatory markers in a white-adipocyte selective and GPR116-dependent manner. Of note, the sFNDC4-GPR116, liver-adipose tissue axis was dampened in (pre) diabetic human patients. Thus our findings will now allow for harnessing this endocrine circuit for alternative therapeutic strategies in obesity-related pre-diabetes.


Subject(s)
Adipose Tissue, White/metabolism , Membrane Proteins/metabolism , Prediabetic State/metabolism , Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue, White/cytology , Adolescent , Adult , Aged , Animals , CHO Cells , Cohort Studies , Cricetulus , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Gene Knockdown Techniques , Glucose/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Insulin/metabolism , Insulin Resistance , Islets of Langerhans/metabolism , Liver/metabolism , Male , Membrane Proteins/administration & dosage , Membrane Proteins/blood , Membrane Proteins/genetics , Mice , Mice, Knockout , Middle Aged , NIH 3T3 Cells , Prediabetic State/blood , Prediabetic State/drug therapy , Prediabetic State/etiology , Primary Cell Culture , Proteins/analysis , Receptors, G-Protein-Coupled/blood , Receptors, G-Protein-Coupled/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Young Adult
3.
Cell Rep ; 30(9): 3183-3194.e4, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130917

ABSTRACT

Biofluids contain various circulating cell-free RNAs (ccfRNAs). The composition of these ccfRNAs varies among biofluids. They constitute tantalizing biomarker candidates for several pathologies and have been demonstrated to be mediators of cellular communication. Little is known about their function in physiological and developmental settings, and most works are limited to in vitro studies. Here, we develop iTAG-RNA, a method for the unbiased tagging of RNA transcripts in mice in vivo. We use iTAG-RNA to isolate hepatocytes and kidney proximal epithelial cell-specific transcriptional responses to a dietary challenge without interfering with the tissue architecture and to identify multiple hepatocyte-secreted ccfRNAs in plasma. We also identify specific transfer of liver-derived ccfRNAs to adipose tissue and skeletal muscle, where they likely constitute a buffering system to maintain lipid homeostasis under acute high-fat-diet feeding. Our findings directly demonstrate in vivo transfer of RNAs between tissues and highlight its implications for endocrine signaling and homeostasis.


Subject(s)
Endocrine System/metabolism , Environment , RNA/metabolism , Transcription, Genetic , Adipose Tissue/metabolism , Animals , Cell-Free Nucleic Acids/blood , Cellular Reprogramming/genetics , Chemical Precipitation , Cytochrome P-450 CYP3A/metabolism , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry , Deoxyuridine/metabolism , Diet, High-Fat , Hepatocytes/metabolism , Homeostasis , Lipid Metabolism/genetics , Liver/metabolism , Mass Spectrometry , Mice , Muscle, Skeletal/metabolism , Organ Specificity , Prodrugs/chemistry , Prodrugs/metabolism , RNA/blood , Reproducibility of Results , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Staining and Labeling
4.
Nat Struct Mol Biol ; 24(11): 902-910, 2017 11.
Article in English | MEDLINE | ID: mdl-28991266

ABSTRACT

Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A1.1 contains a macrodomain capable of binding NAD+-derived metabolites. Here we report that macroH2A1.1 is rapidly induced during myogenic differentiation through a switch in alternative splicing, and that myotubes that lack macroH2A1.1 have a defect in mitochondrial respiratory capacity. We found that the metabolite-binding macrodomain was essential for sustained optimal mitochondrial function but dispensable for gene regulation. Through direct binding, macroH2A1.1 inhibits basal poly-ADP ribose polymerase 1 (PARP-1) activity and thus reduces nuclear NAD+ consumption. The resultant accumulation of the NAD+ precursor NMN allows for maintenance of mitochondrial NAD+ pools that are critical for respiration. Our data indicate that macroH2A1.1-containing chromatin regulates mitochondrial respiration by limiting nuclear NAD+ consumption and establishing a buffer of NAD+ precursors in differentiated cells.


Subject(s)
Cell Nucleus/metabolism , Cell Respiration , Gene Expression Regulation, Developmental , Histones/metabolism , Mitochondria/metabolism , Muscle Development , NAD/metabolism , Animals , Mice/embryology
5.
Mol Nutr Food Res ; 60(4): 949-56, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27061234

ABSTRACT

SCOPE: Impaired folate metabolism increases the risk of birth defects, neurodegenerative and cardiovascular disease, osteoporosis and cancer. We used Caenorhabditis elegans to investigate impaired folate metabolism by RNA interference of key enzymes in the methionine synthase (MS) and thymidylate synthase (TS) cycle and by folate deficiency and over-supplementation feeding studies. METHODS AND RESULTS: Folate status is influenced by genetic variations (polymorphisms), folate deficiency and supplementation. Single RNAi of dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR) and MS revealed that gene regulation is largely affected in both folate cycles. Adaptation requires a close transcriptional connection between TS and MS cycle. Coupled DHFR and MS expression is required to balance both cycles, but seems to reduce the overall rate of folate conversion. Feeding studies showed that folate over-supplementation to functioning metabolism inactivates MS and MTHFR expression and enhances TS activity, which favors DNA synthesis over methylation reactions. Folate deficiency disrupted homeostasis by favoring TS cycle and led to malformation in C. elegans offspring. Embryos show aneuploidy and are nonviable lacking DNA repair during meiotic stage of diakinesis. CONCLUSION: Single gene silencing alters gene expression in both cycles and disrupts folate homeostasis. Folate over-supplementation and deficiency favors TS over MS cycle and causes prophase DNA damage.


Subject(s)
Caenorhabditis elegans/drug effects , Folic Acid Deficiency/metabolism , Folic Acid/adverse effects , Folic Acid/metabolism , Adaptation, Physiological/drug effects , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Clutch Size , DNA Repair , Dietary Supplements , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/physiopathology , Female , Folic Acid/administration & dosage , Gene Expression Regulation/drug effects , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , RNA, Small Interfering , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Thymidylate Synthase/genetics , Thymidylate Synthase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL