Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Nat Commun ; 15(1): 3894, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719837

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Cadmium , Protein Binding , SKP Cullin F-Box Protein Ligases , Cadmium/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological , F-Box Proteins/metabolism , F-Box Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination , Protein Domains , Humans , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
2.
Cell Chem Biol ; 29(9): 1381-1395.e13, 2022 09 15.
Article En | MEDLINE | ID: mdl-35948006

The tumor suppressor p53 is the most frequently mutated protein in human cancer. The majority of these mutations are missense mutations in the DNA binding domain of p53. Restoring p53 tumor suppressor function could have a major impact on the therapy for a wide range of cancers. Here we report a virtual screening approach that identified several small molecules with p53 reactivation activities. The UCI-LC0023 compound series was studied in detail and was shown to bind p53, induce a conformational change in mutant p53, restore the ability of p53 hotspot mutants to associate with chromatin, reestablish sequence-specific DNA binding of a p53 mutant in a reconstituted in vitro system, induce p53-dependent transcription programs, and prevent progression of tumors carrying mutant p53, but not p53null or p53WT alleles. Our study demonstrates feasibility of a computation-guided approach to identify small molecule corrector drugs for p53 hotspot mutations.


Neoplasms , Tumor Suppressor Protein p53 , Cell Line, Tumor , Chromatin , DNA , Humans , Mutation , Neoplasms/drug therapy , Protein Domains , Tumor Suppressor Protein p53/metabolism
3.
Metabolites ; 11(2)2021 Jan 31.
Article En | MEDLINE | ID: mdl-33572567

Availability of the amino acid methionine shows remarkable effects on the physiology of individual cells and whole organisms. For example, most cancer cells, but not normal cells, are hyper dependent on high flux through metabolic pathways connected to methionine, and diets restricted for methionine increase healthy lifespan in model organisms. Methionine's impact on physiology goes beyond its role in initiation of translation and incorporation in proteins. Many of its metabolites have a major influence on cellular functions including epigenetic regulation, maintenance of redox balance, polyamine synthesis, and phospholipid homeostasis. As a central component of such essential pathways, cells require mechanisms to sense methionine availability. When methionine levels are low, cellular response programs induce transcriptional and signaling states to remodel metabolic programs and maintain methionine metabolism. In addition, an evolutionary conserved cell cycle arrest is induced to ensure cellular and genomic integrity during methionine starvation conditions. Methionine and its metabolites are critical for cell growth, proliferation, and development in all organisms. However, mechanisms of methionine perception are diverse. Here we review current knowledge about mechanisms of methionine sensing in yeast and mammalian cells, and will discuss the impact of methionine imbalance on cancer and aging.

4.
Curr Genet ; 67(2): 263-265, 2021 Apr.
Article En | MEDLINE | ID: mdl-33388824

The AAA-ATPase p97/Cdc48 is one of the most abundant proteins in eukaryotes, and owing to its multiple functions, is considered the swiss army knife of cells. Recent findings demonstrate that p97/Cdc48 and its cofactor p47/Shp1 control the heavy metal stress response by active, signal-triggered disassembly of a multisubunit ubiquitin ligase. Here we review this pathway and describe recently achieved mechanistic insight into the role of p47/Shp1 in this process.


Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes/genetics , Proteasome Endopeptidase Complex/genetics , Saccharomyces cerevisiae Proteins/genetics , Valosin Containing Protein/genetics , Adenosine Triphosphate/genetics , Cell Cycle Proteins/genetics , Multiprotein Complexes/ultrastructure , Proteasome Endopeptidase Complex/ultrastructure , Protein Binding/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Ubiquitin/genetics , Valosin Containing Protein/ultrastructure
5.
Proc Natl Acad Sci U S A ; 117(35): 21319-21327, 2020 09 01.
Article En | MEDLINE | ID: mdl-32817489

Organisms can adapt to a broad spectrum of sudden and dramatic changes in their environment. These abrupt changes are often perceived as stress and trigger responses that facilitate survival and eventual adaptation. The ubiquitin-proteasome system (UPS) is involved in most cellular processes. Unsurprisingly, components of the UPS also play crucial roles during various stress response programs. The budding yeast SCFMet30 complex is an essential cullin-RING ubiquitin ligase that connects metabolic and heavy metal stress to cell cycle regulation. Cadmium exposure results in the active dissociation of the F-box protein Met30 from the core ligase, leading to SCFMet30 inactivation. Consequently, SCFMet30 substrate ubiquitylation is blocked and triggers a downstream cascade to activate a specific transcriptional stress response program. Signal-induced dissociation is initiated by autoubiquitylation of Met30 and serves as a recruitment signal for the AAA-ATPase Cdc48/p97, which actively disassembles the complex. Here we show that the UBX cofactor Shp1/p47 is an additional key element for SCFMet30 disassembly during heavy metal stress. Although the cofactor can directly interact with the ATPase, Cdc48 and Shp1 are recruited independently to SCFMet30 during cadmium stress. An intact UBX domain is crucial for effective SCFMet30 disassembly, and a concentration threshold of Shp1 recruited to SCFMet30 needs to be exceeded to initiate Met30 dissociation. The latter is likely related to Shp1-mediated control of Cdc48 ATPase activity. This study identifies Shp1 as the crucial Cdc48 cofactor for signal-induced selective disassembly of a multisubunit protein complex to modulate activity.


F-Box Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Valosin Containing Protein/metabolism , Cadmium , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Protein Domains , Protein Multimerization , Saccharomyces cerevisiae Proteins/genetics , Saccharomycetales , Stress, Physiological
6.
Proc Natl Acad Sci U S A ; 116(35): 17271-17279, 2019 08 27.
Article En | MEDLINE | ID: mdl-31413202

Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR). CHK-2 is activated by the PIP3-kinase-like kinases (PI3KKs) ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), and in metazoan also by DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These DNA damage-dependent activation pathways are conserved and additional activation pathways of CHK-2 are not known. Here we show that PERIOD-4 (PRD-4), the CHK-2 ortholog of Neurospora crassa, is part of a signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by a PI3KK distinct from ATM and ATR. Our data indicate that the activating PI3KK is mechanistic target of rapamycin (mTOR). We provide evidence that translation stress is sensed by unbalancing the expression levels of an unstable protein phosphatase that antagonizes phosphorylation of PRD-4 by mTOR complex 1 (TORC1). Hence, Neurospora mTOR and PRD-4 appear to coordinate metabolic state and cell cycle progression.


Checkpoint Kinase 2/metabolism , Fungal Proteins/metabolism , Neurospora crassa/enzymology , Protein Biosynthesis , Signal Transduction , Stress, Physiological , Checkpoint Kinase 2/genetics , Fungal Proteins/genetics , Neurospora crassa/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
7.
Mol Cell ; 76(1): 126-137.e7, 2019 10 03.
Article En | MEDLINE | ID: mdl-31444107

A surprising complexity of ubiquitin signaling has emerged with identification of different ubiquitin chain topologies. However, mechanisms of how the diverse ubiquitin codes control biological processes remain poorly understood. Here, we use quantitative whole-proteome mass spectrometry to identify yeast proteins that are regulated by lysine 11 (K11)-linked ubiquitin chains. The entire Met4 pathway, which links cell proliferation with sulfur amino acid metabolism, was significantly affected by K11 chains and selected for mechanistic studies. Previously, we demonstrated that a K48-linked ubiquitin chain represses the transcription factor Met4. Here, we show that efficient Met4 activation requires a K11-linked topology. Mechanistically, our results propose that the K48 chain binds to a topology-selective tandem ubiquitin binding region in Met4 and competes with binding of the basal transcription machinery to the same region. The change to K11-enriched chain architecture releases this competition and permits binding of the basal transcription complex to activate transcription.


Basic-Leucine Zipper Transcription Factors/metabolism , Proteomics/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Transcriptional Activation , Ubiquitination , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , Binding Sites , Binding, Competitive , Chromatography, Liquid , Gene Expression Regulation, Fungal , Lysine , Mutation , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Structure-Activity Relationship , Tandem Mass Spectrometry
8.
Nat Chem Biol ; 13(7): 709-714, 2017 Jul.
Article En | MEDLINE | ID: mdl-28459440

Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain-containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1-BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases.


Chelating Agents/pharmacology , Enzyme Inhibitors/pharmacology , Metalloproteases/antagonists & inhibitors , Trans-Activators/antagonists & inhibitors , Zinc/chemistry , Chelating Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , HeLa Cells , Humans , Metalloproteases/metabolism , Proteasome Endopeptidase Complex/metabolism , Pyrrolidinones/chemistry , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacology , Structure-Activity Relationship , Trans-Activators/metabolism
9.
Nat Commun ; 5: 3598, 2014 Apr 07.
Article En | MEDLINE | ID: mdl-24710172

The Neurospora clock protein FRQ forms a complex with casein kinase 1a (CK1a) and FRH, a DEAD box-containing RNA helicase with a clock-independent essential function in RNA metabolism. In the course of a circadian period, FRQ is progressively hyperphosphorylated and eventually degraded. Timed hyperphosphorylation of FRQ is crucial for timekeeping of the clock. Here we show that the ATPase activity of FRH attenuates the kinetics of CK1a-mediated hyperphosphorylation of FRQ. Hyperphosphorylation of FRQ is strictly dependent on site-specific recruitment of a CK1a molecule that is activated upon binding. The FRH ATPase cycle regulates the access of CK1a to phosphorylation sites in FRQ in cis, suggesting that FRH is an ATP-dependent remodelling factor acting on the protein complex. We show that the affinity of CK1a for FRQ decreases with increasing FRQ phosphorylation, suggesting functional inactivation of FRQ in the negative feedback loop of the circadian clock before and independent of its degradation.


Adenosine Triphosphate/metabolism , Casein Kinase Idelta/metabolism , Fungal Proteins/metabolism , Neurospora crassa , RNA Helicases/metabolism , Adenosine Triphosphatases/metabolism , Circadian Clocks , Phosphorylation
10.
J Biol Chem ; 287(44): 36936-43, 2012 Oct 26.
Article En | MEDLINE | ID: mdl-22955278

Timekeeping by circadian clocks relies upon precise adjustment of expression levels of clock proteins. Here we identify glycogen synthase kinase (GSK) as a novel and critical component of the circadian clock of Neurospora crassa that regulates the abundance of its core transcription factor white collar complex (WCC) on a post-transcriptional level. We show that GSK specifically binds and phosphorylates both subunits of the WCC. Reduced expression of GSK promotes an increased accumulation of WC-1, the limiting factor of the WCC, causing an acceleration of the circadian clock and a shorter free-running period.


Circadian Clocks , Fungal Proteins/physiology , Glycogen Synthase Kinases/physiology , Neurospora crassa/enzymology , DNA-Binding Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Knock-In Techniques , Glycogen Synthase Kinases/genetics , Glycogen Synthase Kinases/metabolism , Multiprotein Complexes/metabolism , Neurospora crassa/physiology , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Protein Processing, Post-Translational , Spores, Fungal/enzymology , Transcription Factors/metabolism , Transcription, Genetic
...