Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Adv Ther ; 41(1): 198-214, 2024 Jan.
Article En | MEDLINE | ID: mdl-37882884

INTRODUCTION: Vosoritide is the first precision medical therapy approved to increase growth velocity in children with achondroplasia. Sharing early prescribing experiences across different regions could provide a framework for developing practical guidance for the real-world use of vosoritide. METHODS: Two meetings were held to gather insight and early experience from experts in Europe, the Middle East, and the USA. The group comprised geneticists, pediatric endocrinologists, pediatricians, and orthopedic surgeons. Current practices and considerations for vosoritide were discussed, including administration practicalities, assessments, and how to manage expectations. RESULTS: A crucial step in the management of achondroplasia is to determine if adequate multidisciplinary support is in place. Training for families is essential, including practical information on administration of vosoritide, and how to recognize and manage injection-site reactions. Advocated techniques include establishing a routine, empowering patients by allowing them to choose injection sites, and managing pain. Patients may discontinue vosoritide if they cannot tolerate daily injections or are invited to participate in a clinical trial. Clinicians in Europe and the Middle East emphasized the importance of assessing adherence to daily injections, as non-adherence may impact response and reimbursement. Protocols for monitoring patients receiving vosoritide may be influenced by regional differences in reimbursement and healthcare systems. Core assessments may include pubertal staging, anthropometry, radiography to confirm open physes, the review of adverse events, and discussion of concomitant or new medications-but timing of these assessments may also differ regionally and vary across institutions. Patients and families should be informed that response to vosoritide can vary in both magnitude and timing. Keeping families informed regarding vosoritide clinical trial data is encouraged. CONCLUSION: The early real-world experience with vosoritide is generally positive. Sharing these insights is important to increase understanding of the practicalities of treatment with vosoritide in the clinical setting.


Achondroplasia , Natriuretic Peptide, C-Type , Child , Humans , Natriuretic Peptide, C-Type/therapeutic use , Delivery of Health Care , Pain Management , Achondroplasia/drug therapy
3.
Thromb Haemost ; 122(7): 1139-1146, 2022 Jul.
Article En | MEDLINE | ID: mdl-35052006

The GNE gene encodes an enzyme that initiates and regulates the biosynthesis of N-acetylneuraminic acid, a precursor of sialic acids. GNE mutations are classically associated with Nonaka myopathy and sialuria, following an autosomal recessive and autosomal dominant inheritance pattern. Reports show that single GNE variants cause severe thrombocytopenia without muscle weakness. Using panel sequencing, we identified two novel compound heterozygous variants in GNE in a young girl with life-threatening bleedings, severe congenital thrombocytopenia, and a platelet secretion defect. Both variants are located in the nucleotide-binding site of the N-acetylmannosamin kinase domain of GNE. Lectin array showed decreased α-2,3-sialylation on platelets, consistent with loss of sialic acid synthesis and indicative of rapid platelet clearance. Hematopoietic stem cell transplantation (HSCT) normalized platelet counts. This is the first report of an HSCT in a patient with an inherited GNE defect leading to normal platelet counts.


Distal Myopathies , Thrombocytopenia , Blood Platelets , Distal Myopathies/genetics , Female , Humans , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Mutation , N-Acetylneuraminic Acid , Thrombocytopenia/genetics
4.
J Pediatr Endocrinol Metab ; 35(2): 169-178, 2022 Feb 23.
Article En | MEDLINE | ID: mdl-34551461

OBJECTIVES: Patients with childhood hypophosphatasia (HPP) often have unspecific symptoms. It was our aim to identify patients with mild forms of HPP by laboratory data screening for decreased alkaline phosphatase (AP) within a pediatric population. METHODS: We conducted a retrospective hospital-based data screening for AP activity below the following limits: Girls: ≤12 years: <125 U/L; >12 years: <50 U/L Boys: ≤14 years: <125 U/L; >14 years: <70 U/L. Screening positive patients with otherwise unexplained hypophosphatasemia were invited for further diagnostics: Re-test of AP activity, pyridoxal 5'-phosphate (PLP) in hemolyzed whole blood, phosphoethanolamine (PEA) in serum and urine, and inorganic pyrophosphate in urine. Sequencing of the ALPL gene was performed in patients with clinical and/or laboratory abnormalities suspicious for HPP. RESULTS: We assessed a total of 14,913 samples of 6,731 patients and identified 393 screening-positive patients. The majority of patients were excluded due to known underlying diseases causing AP depression. Of the 30 patients who participated in the study, three had a decrease in AP activity in combination with an increase in PLP and PEA. A heterozygous ALPL mutation was detected in each of them: One patient with a short stature was diagnosed with childhood-HPP and started with enzyme replacement therapy. The remaining two are considered as mutation carriers without osseous manifestation of the disease. CONCLUSIONS: A diagnostic algorithm based on decreased AP is able to identify patients with ALPL mutation after exclusion of the differential diagnoses of hypophosphatasemia and with additional evidence of increased AP substrates.


Hypophosphatasia/diagnosis , Adolescent , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Child , Child, Preschool , Ethanolamines/analysis , Female , Humans , Hypophosphatasia/genetics , Hypophosphatasia/metabolism , Male , Mutation , Retrospective Studies , Young Adult
5.
Genes (Basel) ; 12(11)2021 11 21.
Article En | MEDLINE | ID: mdl-34828442

Marfan syndrome (MFS) is a hereditary connective tissue disease caused by heterozygous mutations in the fibrillin-1 gene (FBN1) located on chromosome 15q21.1. A complex chromosomal rearrangement leading to MFS has only been reported in one case so far. We report on a mother and daughter with marfanoid habitus and no pathogenic variant in the FBN1 gene after next generation sequencing (NGS) analysis, both showing a cytogenetically reciprocal balanced translocation between chromosomes 2 and 15. By means of fluorescence in situ hybridization of Bacterial artificial chromosome (BAC) clones from the breakpoint area on chromosome 15 the breakpoint was narrowed down to a region of approximately 110 kb in FBN1. With the help of optical genome mapping (OGM), the translocation breakpoints were further refined on chromosomes 2 and 15. Sequencing of the regions affected by the translocation identified the breakpoint of chromosome 2 as well as the breakpoint of chromosome 15 in the FBN1 gene leading to its disruption. To our knowledge, this is the first report of patients with typical clinical features of MFS showing a cytogenetically reciprocal translocation involving the FBN1 gene. Our case highlights the importance of structural genome variants as an underlying cause of monogenic diseases and the useful clinical application of OGM in the elucidation of structural variants.


Fibrillin-1/genetics , Marfan Syndrome/genetics , Translocation, Genetic , Adolescent , Adult , Chromosome Breakpoints , Humans , Male , Marfan Syndrome/pathology , Pedigree
6.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article En | MEDLINE | ID: mdl-34548398

Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining-based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type-specific manner. These findings have implications for potential therapeutic strategies.


Bone and Bones/abnormalities , Ciliopathies/pathology , Craniosynostoses/pathology , Cytoskeletal Proteins/metabolism , Ectodermal Dysplasia/pathology , Embryo, Nonmammalian/pathology , Musculoskeletal Abnormalities/pathology , Polycystic Kidney Diseases/pathology , Tubulin/chemistry , Animals , Bone and Bones/metabolism , Bone and Bones/pathology , Ciliopathies/genetics , Ciliopathies/metabolism , Craniosynostoses/genetics , Craniosynostoses/metabolism , Cytoskeletal Proteins/genetics , Disease Models, Animal , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/metabolism , Embryo, Nonmammalian/metabolism , Musculoskeletal Abnormalities/genetics , Musculoskeletal Abnormalities/metabolism , Phenotype , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Tubulin/metabolism , Xenopus laevis
7.
Genes (Basel) ; 12(6)2021 06 07.
Article En | MEDLINE | ID: mdl-34200361

Vertebral, Cardiac, Renal and Limb Defect Syndrome (VCRL), is a very rare congenital malformation syndrome. Pathogenic variants in HAAO (3-Hydroxyanthranilate 3,4-dioxygenase), NADSYN1 (NAD+ Synthetase-1) and KYNU (Kynureninase) have been identified in a handful of affected individuals. All three genes encode for enzymes essential for the NAD+ de novo synthesis pathway. Using Trio-Exome analysis and CGH array analysis in combination with long range PCR, we have identified a novel homozygous copy number variant (CNV) encompassing exon 5 of KYNU in an individual presenting with overlapping features of VCRL and Catel-Manzke Syndrome. Interestingly, only the mother, not the father carried the small deletion in a heterozygous state. High-resolution SNP array analysis subsequently delineated a maternal isodisomy of chromosome 2 (UPD2). Increased xanthurenic acid excretion in the urine confirmed the genetic diagnosis. Our findings confirm the clinical, genetic and metabolic phenotype of VCRL1, adding a novel functionally tested disease allele. We also describe the first patient with NAD+ deficiency disorder resulting from a UPD. Furthermore, we provide a comprehensive review of the current literature covering the genetic basis and pathomechanisms for VCRL and Catel-Manzke Syndrome, including possible phenotype/genotype correlations as well as genetic causes of hypoplastic left heart syndrome.


Gene Deletion , Hand Deformities, Congenital/genetics , Hydrolases/genetics , Pierre Robin Syndrome/genetics , Uniparental Disomy , Adult , Child , Chromosomes, Human, Pair 2 , Exons , Female , Hand Deformities, Congenital/pathology , Hand Deformities, Congenital/urine , Homozygote , Humans , Pierre Robin Syndrome/pathology , Pierre Robin Syndrome/urine , Xanthurenates/urine
8.
Diagnostics (Basel) ; 11(5)2021 Apr 22.
Article En | MEDLINE | ID: mdl-33922271

Hypomethylation of H19 and IGF2 can cause Silver-Russell syndrome (SRS), a clinically and genetically heterogeneous condition characterized by intrauterine growth restriction, poor postnatal growth, relative macrocephaly, craniofacial abnormalities, body asymmetry, hypoglycemia and feeding difficulties. Isolated hypomethylation of IGF2 has been reported in single cases of SRS as well. Here, we report on a 19-month-old patient who presented with two episodes of hypoglycemic seizures. No intrauterine growth restriction was observed, the patient did not present with SRS-typical facial features, and postnatal growth in the first months of life was along the lower normal percentiles. Exome sequencing did not reveal any likely pathogenic variants explaining the phenotype; however, hypomethylation studies revealed isolated hypomethylation of IGF2, while the methylation of H19 appeared normal. Hypoglycemia responded well to growth hormone therapy, and the boy showed good catch-up growth. Our case demonstrates that SRS and isolated IGF2 hypomethylation should be considered early in the diagnosis of recurrent hypoglycemia in childhood, especially in combination with small gestational age and poor growth.

9.
Noncoding RNA Res ; 6(4): 211-224, 2021 Dec.
Article En | MEDLINE | ID: mdl-34988338

Mutations in the non-coding snoRNA component of mitochondrial RNA processing endoribonuclease (RMRP) are the cause of cartilage-hair hypoplasia (CHH). CHH is a rare form of metaphyseal chondrodysplasia characterized by disproportionate short stature and abnormal growth plate development. The process of chondrogenic differentiation within growth plates of long bones is vital for longitudinal bone growth. However, molecular mechanisms behind impaired skeletal development in CHH patients remain unclear. We employed a transdifferentiation model (FDC) combined with whole transcriptome analysis to investigate the chondrogenic transdifferentiation capacity of CHH fibroblasts and to examine pathway regulation in CHH cells during chondrogenic differentiation. We established that the FDC transdifferentiation model is a relevant in vitro model of chondrogenic differentiation, with an emphasis on the terminal differentiation phase, which is crucial for longitudinal bone growth. We demonstrated that CHH fibroblasts are capable of transdifferentiating into chondrocyte-like cells, and show a reduced commitment to terminal differentiation. We also found a number of key factors of BMP, FGF, and IGF-1 signalling axes to be significantly upregulated in CHH cells during the chondrogenic transdifferentiation. Our results support postulated conclusions that RMRP has pleiotropic functions and profoundly affects multiple aspects of cell fate and signalling. Our findings shed light on the consequences of pathological CHH mutations in snoRNA RMRP during chondrogenic differentiation and the relevance and roles of non-coding RNAs in genetic diseases in general.

10.
Orphanet J Rare Dis ; 14(1): 231, 2019 10 22.
Article En | MEDLINE | ID: mdl-31640729

BACKGROUND: PMM2-CDG (Phosphomannomutase 2 - Congenital disorder of glycosylation-Ia; CDG-Ia) is the most common glycosylation defect, often presenting as a severe multisystem disorder that can be fatal within the first years of life. While mannose treatment has been shown to correct glycosylation in vitro and in vivo in mice, no convincing effects have been observed in short-term treatment trials in single patients so far. RESULTS: We report on a boy with a severe PMM2-CDG who received a continuous intravenous mannose infusion over a period of 5 months during the first year of life in a dose of 0.8 g/kg/day. N-glycosylation of serum glycoproteins and mannose concentrations in serum were studied regularly. Unfortunately, no biochemical or clinical improvement was observed, and the therapy was terminated at age 9 months. CONCLUSION: Postnatal intravenous D-mannose treatment seems to be ineffective in PMM2-CDG.


Congenital Disorders of Glycosylation/drug therapy , Mannose/administration & dosage , Mannose/therapeutic use , Phosphotransferases (Phosphomutases)/deficiency , Drug Administration Schedule , Fatal Outcome , Humans , Infant , Male , Transferrins/blood , Transferrins/metabolism
11.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Article En | MEDLINE | ID: mdl-31564437

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Molecular Chaperones/genetics , Mutation , Osteogenesis Imperfecta/genetics , Animals , Female , Genes, Recessive , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Male , Mice , Pedigree , Phenotype , Wnt Signaling Pathway
12.
JCI Insight ; 4(3)2019 Feb 07.
Article En | MEDLINE | ID: mdl-30728324

Odontochondrodysplasia (ODCD) is an unresolved genetic disorder of skeletal and dental development. Here, we show that ODCD is caused by hypomorphic TRIP11 mutations, and we identify ODCD as the nonlethal counterpart to achondrogenesis 1A (ACG1A), the known null phenotype in humans. TRIP11 encodes Golgi-associated microtubule-binding protein 210 (GMAP-210), an essential tether protein of the Golgi apparatus that physically interacts with intraflagellar transport 20 (IFT20), a component of the ciliary intraflagellar transport complex B. This association and extraskeletal disease manifestations in ODCD point to a cilium-dependent pathogenesis. However, our functional studies in patient-derived primary cells clearly support a Golgi-based disease mechanism. In spite of reduced abundance, residual GMAP variants maintain partial Golgi integrity, normal global protein secretion, and subcellular distribution of IFT20 in ODCD. These functions are lost when GMAP-210 is completely abrogated in ACG1A. However, a similar defect in chondrocyte maturation is observed in both disorders, which produces a cellular achondrogenesis phenotype of different severity, ensuing from aberrant glycan processing and impaired extracellular matrix proteoglycan secretion by the Golgi apparatus.

13.
JCI Insight ; 3(23)2018 12 06.
Article En | MEDLINE | ID: mdl-30518689

Biallelic loss-of-function mutations in TRIP11, encoding the golgin GMAP-210, cause the lethal human chondrodysplasia achondrogenesis 1A (ACG1A). We now find that a homozygous splice-site mutation of the lamin B receptor (LBR) gene results in the same phenotype. Intrigued by the genetic heterogeneity, we compared GMAP-210- and LBR-deficient primary cells to unravel how particular mutations in LBR cause a phenocopy of ACG1A. We could exclude a regulatory interaction between LBR and GMAP-210 in patients' cells. However, we discovered a common disruption of Golgi apparatus architecture that was accompanied by decreased secretory trafficking in both cases. Deficiency of Golgi-dependent glycan processing indicated a similar downstream effect of the disease-causing mutations upon Golgi function. Unexpectedly, our results thus point to a common pathogenic mechanism in GMAP-210- and LBR-related diseases attributable to defective secretory trafficking at the Golgi apparatus.


Achondroplasia/genetics , Nuclear Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Transcription Factors/genetics , Achondroplasia/pathology , Biological Transport, Active/genetics , Cell Proliferation , Cell Survival , Cholesterol/analysis , Cytoskeletal Proteins , Endoplasmic Reticulum/ultrastructure , Female , Fetus , Fibroblasts/pathology , Genetic Diseases, Inborn/genetics , Golgi Apparatus/physiology , Golgi Apparatus/ultrastructure , Humans , Mutation , Pedigree , Phenotype , Sequence Analysis, Protein , Sterols/analysis , Lamin B Receptor
14.
J Bone Miner Metab ; 36(6): 723-733, 2018 Nov.
Article En | MEDLINE | ID: mdl-29236161

Hypophosphatasia (HPP) is a rare inherited metabolic bone disease due to a deficiency of the tissue nonspecific alkaline phosphatase isoenzyme (TNSALP) encoded by the ALPL gene. Patients have consistently low serum alkaline phosphatase (AP), so that this parameter is a good hallmark of the disease. Adult HPP is heterogeneous, and some patients present only mild nonpathognomonic symptoms which are also common in the general population such as joint pain, osteomalacia and osteopenia, chondrocalcinosis, arthropathy and musculoskeletal pain. Adult HPP may be recessively or dominantly inherited; the latter case is assumed to be due to the dominant negative effect (DNE) of missense mutations derived from the functional homodimeric structure of TNSALP. However, there is no biological argument excluding the possibility of other causes of dominant HPP. Rheumatologists and endocrinologists are increasingly solicited for patients with low AP and nonpathognomonic symptoms of HPP. Many of these patients are heterozygous for an ALPL mutation and a challenging question is to determine if these symptoms, which are also common in the general population, are attributable to their heterozygous ALPL mutation or not. In an attempt to address this question, we reviewed a cohort of 61 adult patients heterozygous for an ALPL mutation. Mutations were distinguished according to their statistical likelihood to show a DNE. One-half of the patients carried mutations predicted with no DNE and were slightly less severely affected by the age of onset, serum AP activity and history of fractures. We hypothesized that these mutations result in another mechanism of dominance or are recessive alleles. To identify other genetic factors that could trigger the disease phenotype in heterozygotes for potential recessive mutations, we examined the next-generation sequencing results of 32 of these patients for a panel of 12 genes involved in the differential diagnosis of HPP or candidate modifier genes of HPP. The heterozygous genotype G/C of the COL1A2 coding SNP rs42524 c.1645C > G (p.Pro549Ala) was associated with the severity of the phenotype in patients carrying mutations with a DNE whereas the homozygous genotype G/G was over-represented in patients carrying mutations without a DNE, suggesting a possible role of this variant in the disease phenotype. These preliminary results support COL1A2 as a modifier gene of HPP and suggest that a significant proportion of adult heterozygotes for ALPL mutations may have unspecific symptoms not attributable to their heterozygosity.


Alkaline Phosphatase/genetics , Genetic Predisposition to Disease , Mutation/genetics , Adolescent , Adult , Aged , Alkaline Phosphatase/blood , Female , Genes, Dominant , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics , Young Adult
15.
Am J Hum Genet ; 101(5): 815-823, 2017 Nov 02.
Article En | MEDLINE | ID: mdl-29100092

Fibronectin is a master organizer of extracellular matrices (ECMs) and promotes the assembly of collagens, fibrillin-1, and other proteins. It is also known to play roles in skeletal tissues through its secretion by osteoblasts, chondrocytes, and mesenchymal cells. Spondylometaphyseal dysplasias (SMDs) comprise a diverse group of skeletal dysplasias and often manifest as short stature, growth-plate irregularities, and vertebral anomalies, such as scoliosis. By comparing the exomes of individuals with SMD with the radiographic appearance of "corner fractures" at metaphyses, we identified three individuals with fibronectin (FN1) variants affecting highly conserved residues. Furthermore, using matching tools and the SkelDys emailing list, we identified other individuals with de novo FN1 variants and a similar phenotype. The severe scoliosis in most individuals and rare developmental coxa vara distinguish individuals with FN1 mutations from those with classical Sutcliffe-type SMD. To study functional consequences of these FN1 mutations on the protein level, we introduced three disease-associated missense variants (p.Cys87Phe [c.260G>T], p.Tyr240Asp [c.718T>G], and p.Cys260Gly [c.778T>G]) into a recombinant secreted N-terminal 70 kDa fragment (rF70K) and the full-length fibronectin (rFN). The wild-type rF70K and rFN were secreted into the culture medium, whereas all mutant proteins were either not secreted or secreted at significantly lower amounts. Immunofluorescence analysis demonstrated increased intracellular retention of the mutant proteins. In summary, FN1 mutations that cause defective fibronectin secretion are found in SMD, and we thus provide additional evidence for a critical function of fibronectin in cartilage and bone.


Fibronectins/genetics , Fractures, Bone/genetics , Mutation/genetics , Osteochondrodysplasias/genetics , Adolescent , Adult , Bone Diseases, Developmental/genetics , Bone and Bones/pathology , Cartilage/pathology , Child , Child, Preschool , Exome/genetics , Female , Humans , Male , Phenotype , Scoliosis/genetics
17.
Sci Rep ; 7(1): 6440, 2017 07 25.
Article En | MEDLINE | ID: mdl-28743979

Mutations in the RMRP-gene, encoding the lncRNA component of the RNase MRP complex, are the origin of cartilage-hair hypoplasia. Cartilage-hair hypoplasia is associated with severe dwarfism caused by impaired skeletal development. However, it is not clear why mutations in RMRP RNA lead to skeletal dysplasia. Since chondrogenic differentiation of the growth plate is required for development of long bones, we hypothesized that RMRP RNA plays a pivotal role in chondrogenic differentiation. Expression of Rmrp RNA and RNase MRP protein subunits was detected in the murine growth plate and during the course of chondrogenic differentiation of ATDC5 cultures, where Rmrp RNA expression was found to be correlated with chondrocyte hypertrophy. Genetic interference with Rmrp RNA expression in ATDC5 cultures caused a deregulation of chondrogenic differentiation, with a prominent impact on hypertrophy and changes in pre-rRNA processing and rRNA levels. Promoter reporter studies showed that Rmrp RNA expression responds to chondrogenic morphogens. Chondrogenic trans-differentiation of cartilage-hair hypoplasia fibroblasts was impaired with a pronounced impact on hypertrophic differentiation. Together, our data show that RMRP RNA expression is regulated during different stages of chondrogenic differentiation and indicate that RMRP RNA may play a pivotal role in chondrocyte hypertrophy, with potential consequences for CHH pathobiology.


Cell Differentiation/genetics , Chondrocytes/cytology , RNA, Long Noncoding/genetics , Animals , Cell Enlargement , Cells, Cultured , Chondrocytes/physiology , Endoribonucleases/genetics , Fibroblasts/cytology , Gene Expression Regulation , Gene Knockdown Techniques , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Growth Plate/cytology , Hair/abnormalities , Hair/pathology , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/pathology , Mice, Inbred C57BL , Osteochondrodysplasias/congenital , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Primary Immunodeficiency Diseases , Promoter Regions, Genetic
18.
Nat Commun ; 8: 15861, 2017 06 12.
Article En | MEDLINE | ID: mdl-28604699

Loss-of-function mutations in capillary morphogenesis gene 2 (CMG2/ANTXR2), a transmembrane surface protein, cause hyaline fibromatosis syndrome (HFS), a severe genetic disorder that is characterized by large subcutaneous nodules, gingival hypertrophy and severe painful joint contracture. Here we show that CMG2 is an important regulator of collagen VI homoeostasis. CMG2 loss of function promotes accumulation of collagen VI in patients, leading in particular to nodule formation. Similarly, collagen VI accumulates massively in uteri of Antxr2-/- mice, which do not display changes in collagen gene expression, and leads to progressive fibrosis and sterility. Crossing Antxr2-/- with Col6a1-/- mice leads to restoration of uterine structure and reversion of female infertility. We also demonstrate that CMG2 may act as a signalling receptor for collagen VI and mediates its intracellular degradation.


Collagen Type VI/metabolism , Hyaline Fibromatosis Syndrome/metabolism , Receptors, Peptide/physiology , Animals , Female , Fibrosis/metabolism , Fibrosis/pathology , Humans , Matrix Metalloproteinases/metabolism , Mice , Mice, Knockout , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Uterus/metabolism , Uterus/pathology
19.
Front Immunol ; 8: 449, 2017.
Article En | MEDLINE | ID: mdl-28507545

Typical features of dyskeratosis congenita (DC) resulting from excessive telomere shortening include bone marrow failure (BMF), mucosal fragility, and pulmonary or liver fibrosis. In more severe cases, immune deficiency and recurring infections can add to disease severity. RTEL1 deficiency has recently been described as a major genetic etiology, but the molecular basis and clinical consequences of RTEL1-associated DC are incompletely characterized. We report our observations in a cohort of six patients: five with novel biallelic RTEL1 mutations p.Trp456Cys, p.Ile425Thr, p.Cys1244ProfsX17, p.Pro884_Gln885ins53X13, and one with novel heterozygous mutation p.Val796AlafsX4. The most unifying features were hypocellular BMF in 6/6 and B-/NK-cell lymphopenia in 5/6 patients. In addition, three patients with homozygous mutations p.Trp456Cys or p.Ile425Thr also suffered from immunodeficiency, cerebellar hypoplasia, and enteropathy, consistent with Hoyeraal-Hreidarsson syndrome. Chromosomal breakage resembling a homologous recombination defect was detected in patient-derived fibroblasts but not in hematopoietic compartment. Notably, in both cellular compartments, differential expression of 1243aa and 1219/1300aa RTEL1 isoforms was observed. In fibroblasts, response to ionizing irradiation and non-homologous end joining were not impaired. Telomeric circles did not accumulate in patient-derived primary cells and lymphoblastoid cell lines, implying alternative pathomechanisms for telomeric loss. Overall, RTEL1-deficient cells exhibited a phenotype of replicative exhaustion, spontaneous apoptosis and senescence. Specifically, CD34+ cells failed to expand in vitro, B-cell development was compromised, and T-cells did not proliferate in long-term culture. Finally, we report on the natural history and outcome of our patients. While two patients died from infections, hematopoietic stem cell transplantation (HSCT) resulted in sustained engraftment in two patients. Whether chemotherapy negatively impacts on the course and onset of other DC-related symptoms remains open at present. Early-onset lung disease occurred in one of our patients after HSCT. In conclusion, RTEL deficiency can show a heterogeneous clinical picture ranging from mild hypocellular BMF with B/NK cell lymphopenia to early-onset, very severe, and rapidly progressing cellular deficiency.

...