Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589873

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Colonic Neoplasms , Colorectal Neoplasms , Humans , Mice , Animals , Prion Proteins/genetics , Prion Proteins/metabolism , beta Catenin/metabolism , Glucocorticoids , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Phenotype , Prognosis , Wnt Signaling Pathway , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
2.
Front Neurosci ; 17: 1125492, 2023.
Article En | MEDLINE | ID: mdl-37123375

The magnitude of innate inflammatory immune responses is dependent on interactions between peripheral neural and immune cells. In particular, a cholinergic anti-inflammatory pathway (CAP) has been identified in the spleen whereby noradrenaline (NA) released by splenic nerves binds to ß2-adrenergic receptors (ß2-AR) on CD4+ T cells which, in turn, release acetylcholine (ACh). The binding of ACh to α7 acetylcholine receptors (α7-AChR) expressed by splenic macrophages inhibits the production of inflammatory cytokines, including tumor necrosis factor (TNF). However, the role of ACh-secreting CD4+ T-cells in the CAP is still controversial and largely based on the absence of this anti-inflammatory pathway in mice lacking T-cells (nude, FoxN1-/-). Using four conscious, non-lymphopenic transgenic mouse models, we found that, rather than acting on CD4+ T-cells, NA released by splenic nerve terminals acts directly onto ß2-AR on splenic myeloid cells to exert this anti-inflammatory effect. We also show that, while larger doses of LPS are needed to trigger CAP in nude mouse strain compared to other strains, TNF production can be inhibited in these animals lacking CD4+ T-cell by stimulating either the vagus or the splenic nerve. We demonstrate that CD4+ T-cells are dispensable for the CAP after antibody-mediated CD4+ T-cell depletion in wild type mice. Furthermore, we found that NA-mediated inhibition of in vitro LPS-induced TNF secretion by human or porcine splenocytes does not require α7-AChR signaling. Altogether our data demonstrate that activation of the CAP by stimulation of vagus or splenic nerves in mice is mainly mediated by direct binding of NA to ß2-AR on splenic macrophages, and suggest that the same mechanism is at play in larger species.

3.
RSC Adv ; 11(51): 31941-31949, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-35495511

We report that boric acid, BO3H3, is a good precatalyst for the BH3-catalyzed hydroboration of esters using pinacolborane as a borylation agent. Using microwave irradiation as an energy source, we demonstrated that a dozen esters were converted into the corresponding boronate ethers in good yields. It was also possible to use boric acid as a precatalyst to reduce carbonates and alkynes. Considering the hazardous and pyrophoric nature of BH3 solutions, boric acid proves to be a safe and green precatalyst for the metal-free reduction of unsaturated species.

4.
Nat Biotechnol ; 37(12): 1446-1451, 2019 12.
Article En | MEDLINE | ID: mdl-31712773

Vagus nerve stimulation can ameliorate autoimmune diseases such as rheumatoid arthritis by modulation of the immune system. Its efficacy for the treatment of type 1 diabetes has not been explored, in part because the nerves projecting to the pancreatic lymph nodes (pLNs) in mice are unmapped. Here, we map the nerve projecting to the pancreas and pLNs in mice and use a minimally invasive surgical procedure to implant micro-cuff electrodes onto the nerve. Pancreatic nerve electrical stimulation (PNES) resulted in ß-adrenergic receptor-mediated-accumulation of B and T cells in pLNs and reduced production of pro-inflammatory cytokines following lipopolysaccharide stimulation. Autoreactive T cells showed reduced proliferation in pLNs of mice receiving PNES as compared to sham controls. In a spontaneous mouse model of autoimmune diabetes, PNES inhibited disease progression in diabetic mice.


Diabetes Mellitus, Type 1 , Electric Stimulation Therapy , Pancreas , Animals , B-Lymphocytes/immunology , Blood Glucose/metabolism , Cytokines/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Female , Insulin/metabolism , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreas/immunology , Pancreas/innervation , Pancreas/metabolism , T-Lymphocytes/immunology
5.
J Am Chem Soc ; 139(41): 14714-14723, 2017 10 18.
Article En | MEDLINE | ID: mdl-28901757

Two novel frustrated Lewis pair (FLP) aminoboranes, (1-Pip-2-BH2-C6H4)2 (2; Pip = piperidyl) and (1-NEt2-2-BH2-C6H4)2 (3; NEt2 = diethylamino), were synthesized, and their structural features were elucidated both in solution and in the solid state. The reactivity of these species for the borylation of heteroarenes was investigated and compared to previously reported (1-TMP-2-BH2-C6H4)2 (1; TMP = tetramethylpiperidyl) and (1-NMe2-2-BH2-C6H4)2 (4; NMe2 = dimethylamino). It was shown that 2 and 3 are more active catalysts for the borylation of heteroarenes than the bulkier analogue 1. Kinetic studies and density functional theory calculations were performed with 1 and 2 to ascertain the influence of the amino group of this FLP-catalyzed transformation. The C-H activation step was found to be more facile with smaller amines at the expense of a more difficult dissociation of the dimeric species. The bench-stable fluoroborate salts of all catalysts (1F-4F) have been synthesized and tested for the borylation reaction. The new precatalysts 2F and 3F are showing higher reaction rates and yields for multigram-scale syntheses.

6.
Angew Chem Int Ed Engl ; 55(41): 12722-6, 2016 10 04.
Article En | MEDLINE | ID: mdl-27625187

The ansa-aminohydroborane 1-NMe2 -2-(BH2 )C6 H4 crystallizes in an unprecedented type of dimer containing a B-H bond activated by one FLP moiety. Upon mild heating and without the use of any catalyst, this molecule liberates one equivalent of hydrogen to generate a diborane molecule. The synthesis and structural characterization of these new compounds, as well as the kinetic monitoring of the reaction and the DFT investigation of its mechanism, are reported.

7.
Chem Commun (Camb) ; 52(31): 5387-90, 2016 Apr 07.
Article En | MEDLINE | ID: mdl-27005399

While the organotrifluoroborate group is commonly used as a leaving group in cross-coupling reactions, we now show that their high stability can be used to protect the Lewis acidic moieties of frustrated Lewis pair catalysts. Indeed, the air and moisture-stable trifluoro- and difluoroborate derivatives of bulky (tetramethylpiperidino)benzene are shown to be conveniently converted to their dihydroborane analogue which is known to activate small molecules. An efficient synthesis route to these stable and convenient precatalysts, their deprotection chemistry and their benchtop use for the dehydrogenative borylation of heteroarenes is presented.

...