Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Eye Vis (Lond) ; 11(1): 7, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38374153

BACKGROUND: Abnormal blinking pattern is associated with ocular surface diseases. However, blink is difficult to analyze due to the rapid movement of eyelids. Deep learning machine (DLM) has been proposed as an optional tool for blinking analysis, but its clinical practicability still needs to be proven. Therefore, the study aims to compare the DLM-assisted Keratograph 5M (K5M) as a novel method with the currently available Lipiview in the clinic and assess whether blinking parameters can be applied in the diagnosis of dry eye disease (DED). METHODS: Thirty-five DED participants and 35 normal subjects were recruited in this cross-sectional study. DED questionnaire and ocular surface signs were evaluated. Blinking parameters including number of blinks, number of incomplete blinking (IB), and IB rate were collected from the blinking videos recorded by the K5M and Lipiview. Blinking parameters were individually collected from the DLM analyzed K5M videos and Lipiview generated results. The agreement and consistency of blinking parameters were compared between the two devices. The association of blinking parameters to DED symptoms and signs were evaluated via heatmap. RESULTS: In total, 140 eyes of 70 participants were included in this study. Lipiview presented a higher number of IB and IB rate than those from DLM-assisted K5M (P ≤ 0.006). DLM-assisted K5M captured significant differences in number of blinks, number of IB and IB rate between DED and normal subjects (P ≤ 0.035). In all three parameters, DLM-assisted K5M also showed a better consistency in repeated measurements than Lipiview with higher intraclass correlation coefficients (number of blinks: 0.841 versus 0.665; number of IB: 0.750 versus 0.564; IB rate: 0.633 versus 0.589). More correlations between blinking parameters and DED symptoms and signs were found by DLM-assisted K5M. Moreover, the receiver operating characteristic analysis showed the number of IB from K5M exhibiting the highest area under curve of 0.773. CONCLUSIONS: DLM-assisted K5M is a useful tool to analyze blinking videos and detect abnormal blinking patterns, especially in distinguishing DED patients from normal subjects. Large sample investigations are therefore warranted to assess its clinical utility before implementation.

2.
ACS Sens ; 8(10): 3882-3891, 2023 10 27.
Article En | MEDLINE | ID: mdl-37737091

Diabetic cataract (DC) surgery carries risks such as slow wound healing, macular edema, and progression of retinopathy and is faced with a deficiency of effective drugs. In this context, we proposed a protocol to evaluate the drug's efficacy using lipid droplets (LDs) as the marker. For this purpose, a fluorescent probe PTZ-LD for LDs detection is developed based on the phenothiazine unit. The probe displays polarity-dependent emission variations, i.e., lower polarity leading to stronger intensity. Especially, the probe exhibits photostability superior to that of Nile Red, a commercial LDs staining dye. Using the probe, the formation of LDs in DC-modeled human lens epithelial (HLE) cells is validated, and the interplay of LDs-LDs and LDs-others are investigated. Unexpectedly, lipid transfer between LDs is visualized. Moreover, the therapeutic efficacy of various drugs in DC-modeled HLE cells is assessed. Ultimately, more LDs were found in lens epithelial tissues from DC patients than in cataract tissues for the first time. We anticipate that this work can attract more attention to the important roles of LDs during DC progression.


Cataract , Diabetes Mellitus , Humans , Lipid Droplets , HeLa Cells , Epithelial Cells , Optical Imaging
3.
Invest Ophthalmol Vis Sci ; 64(3): 16, 2023 03 01.
Article En | MEDLINE | ID: mdl-36881408

Purpose: To determine whether SIRT1 regulates high glucose (HG)-induced inflammation and cataract formation through modulating TXNIP/NLRP3 inflammasome activation in human lens epithelial cells (HLECs) and rat lenses. Methods: HG stress from 25 to 150 mM was imposed on HLECs, with treatments using small interfering RNAs (siRNAs) targeting NLRP3, TXNIP, and SIRT1, as well as a lentiviral vector (LV) for SIRT1. Rat lenses were cultivated with HG media, with or without the addition of NLRP3 inhibitor MCC950 or SIRT1 agonist SRT1720. High mannitol groups were applied as the osmotic controls. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of SIRT1, TXNIP, NLRP3, ASC, and IL-1ß. Reactive oxygen species (ROS) generation, cell viability, and death were also assessed. Results: HG stress induced a decline in SIRT1 expression and caused TXNIP/NLRP3 inflammasome activation in a concentration-dependent manner in HLECs, which was not observed in the high mannitol-treated groups. Knocking down NLRP3 or TXNIP inhibited NLRP3 inflammasome-induced IL-1ß p17 secretion under HG stress. Transfections of si-SIRT1 and LV-SIRT1 exerted inverse effects on NLRP3 inflammasome activation, suggesting that SIRT1 acts as an upstream regulator of TXNIP/NLRP3 activity. HG stress induced lens opacity and cataract formation in cultivated rat lenses, which was prevented by MCC950 or SRT1720 treatment, with concomitant reductions in ROS production and TXNIP/NLRP3/IL-1ß expression levels. Conclusions: The TXNIP/NLRP3 inflammasome pathway promotes HG-induced inflammation and HLEC pyroptosis, which is negatively regulated by SIRT1. This suggests viable strategies for treating diabetic cataract.


Cataract , Inflammasomes , Sirtuin 1 , Animals , Humans , Rats , Carrier Proteins , Furans , Glucose/pharmacology , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Sirtuin 1/metabolism
4.
Lab Invest ; 103(3): 100022, 2023 03.
Article En | MEDLINE | ID: mdl-36925204

Perturbation of solute carriers (SLCs) has been implicated in metabolic disorders and cancer, highlighting the potential for drug discovery and therapeutic opportunities. However, there is relatively little exploration of the clinical relevance and potential molecular mechanisms underlying the role of the SLC12 family in uveal melanoma (UVM). Here, we performed an integrative multiomics analysis of the SLC12 family in multicenter UVM datasets and found that high expression of SLC12A3 and SLC12A9 was associated with unfavorable prognosis. Moreover, SLC12A3 and SLC12A9 were highly expressed in UVM in vivo. We experimentally characterized the roles of these proteins in tumorigenesis in vitro and explored their association with the prognosis of UVM. Lastly, we identified the HCP5-miR-140-5p axis as a potential noncoding RNA pathway upstream of SLC12A3 and SLC12A9, which was associated with immunomodulation and may represent a novel predictor for clinical prognosis and responsiveness to checkpoint blockade immunotherapy. These findings may facilitate a better understanding of the SLCome and guide future rationalized development of SLC-targeted therapy and drug discovery for UVM.


Melanoma , MicroRNAs , Uveal Neoplasms , Humans , Melanoma/genetics , Melanoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , Up-Regulation , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism
...