Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 84: 104246, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36099812

ABSTRACT

BACKGROUND: Primary Ovarian Insufficiency (POI), a public health problem, affects 1-3.7% of women under 40 yielding infertility and a shorter lifespan. Most causes are unknown. Recently, genetic causes were identified, mostly in single families. We studied an unprecedented large cohort of POI to unravel its molecular pathophysiology. METHODS: 375 patients with 70 families were studied using targeted (88 genes) or whole exome sequencing with pathogenic/likely-pathogenic variant selection. Mitomycin-induced chromosome breakages were studied in patients' lymphocytes if necessary. FINDINGS: A high-yield of 29.3% supports a clinical genetic diagnosis of POI. In addition, we found strong evidence of pathogenicity for nine genes not previously related to a Mendelian phenotype or POI: ELAVL2, NLRP11, CENPE, SPATA33, CCDC150, CCDC185, including DNA repair genes: C17orf53(HROB), HELQ, SWI5 yielding high chromosomal fragility. We confirmed the causal role of BRCA2, FANCM, BNC1, ERCC6, MSH4, BMPR1A, BMPR1B, BMPR2, ESR2, CAV1, SPIDR, RCBTB1 and ATG7 previously reported in isolated patients/families. In 8.5% of cases, POI is the only symptom of a multi-organ genetic disease. New pathways were identified: NF-kB, post-translational regulation, and mitophagy (mitochondrial autophagy), providing future therapeutic targets. Three new genes have been shown to affect the age of natural menopause supporting a genetic link. INTERPRETATION: We have developed high-performance genetic diagnostic of POI, dissecting the molecular pathogenesis of POI and enabling personalized medicine to i) prevent/cure comorbidities for tumour/cancer susceptibility genes that could affect life-expectancy (37.4% of cases), or for genetically-revealed syndromic POI (8.5% of cases), ii) predict residual ovarian reserve (60.5% of cases). Genetic diagnosis could help to identify patients who may benefit from the promising in vitro activation-IVA technique in the near future, greatly improving its success in treating infertility. FUNDING: Université Paris Saclay, Agence Nationale de Biomédecine.


Subject(s)
Infertility , Primary Ovarian Insufficiency , Female , Humans , Infertility/complications , Mitomycins , NF-kappa B , Precision Medicine , Primary Ovarian Insufficiency/etiology
2.
Sci Rep ; 10(1): 9861, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32555262

ABSTRACT

Non-Invasive Prenatal Diagnosis (NIPD), based on the analysis of circulating cell-free fetal DNA (cff-DNA), is successfully implemented for an increasing number of monogenic diseases. However, technical issues related to cff-DNA characteristics remain, and not all mutations can be screened with this method, particularly triplet expansion mutations that frequently concern prenatal diagnosis requests. The objective of this study was to develop an approach to isolate and analyze Circulating Trophoblastic Fetal Cells (CFTCs) for NIPD of monogenic diseases caused by triplet repeat expansion or point mutations. We developed a method for CFTC isolation based on DEPArray sorting and used Huntington's disease as the clinical model for CFTC-based NIPD. Then, we investigated whether CFTC isolation and Whole Genome Amplification (WGA) could be used for NIPD in couples at risk of transmitting different monogenic diseases. Our data show that the allele drop-out rate was 3-fold higher in CFTCs than in maternal cells processed in the same way. Moreover, we give new insights into CFTCs by compiling data obtained by extensive molecular testing by microsatellite multiplex PCR genotyping and by WGA followed by mini-exome sequencing. CFTCs appear to be often characterized by a random state of genomic degradation.


Subject(s)
Fetus/cytology , Prenatal Diagnosis/methods , Single-Cell Analysis , Trophoblasts/cytology , Cell Separation , Feasibility Studies , High-Throughput Nucleotide Sequencing , Humans , Huntington Disease/diagnosis , Huntington Disease/genetics , Trinucleotide Repeats/genetics
3.
J Clin Med ; 9(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384747

ABSTRACT

Predictive genetic testing (PGT) is offered to asymptomatic relatives at risk of hereditary heart disease, but the impact of result disclosure has been little studied. We evaluated the psychosocial impacts of PGT in hereditary heart disease, using self-report questionnaires (including the State-Trait Anxiety Inventory) in 517 adults, administered three times to the prospective cohort (PCo: n = 264) and once to the retrospective cohort (RCo: n = 253). The main motivations for undergoing PGT were "to remove doubt" and "for their children". The level of anxiety increased between pre-test and result appointments (p <0.0001), returned to baseline after the result (PCo), and was moderately elevated at 4.4 years (RCo). Subjects with a history of depression or with high baseline anxiety were more likely to develop anxiety after PGT result (p = 0.004 and p <0.0001, respectively), whatever it was. Unfavourable changes in professional and/or family life were observed in 12.4% (PCo) and 18.7% (RCo) of subjects. Few regrets about PGT were expressed (0.8% RCo, 2.3% PCo). Medical benefit was not the main motivation, which emphasises the role of pre/post-test counselling. When PGT was performed by expert teams, the negative impact was modest, but careful management is required in specific categories of subjects, whatever the genetic test result.

SELECTION OF CITATIONS
SEARCH DETAIL
...