Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1426773, 2024.
Article in English | MEDLINE | ID: mdl-39193503

ABSTRACT

Introduction: The Burkholderia cepacia complex encompasses a group of gram-negative opportunistic pathogens that cause chronic lung infections in people with cystic fibrosis. Distinct from other respiratory pathogens, Burkholderia causes a unique clinical disease in a subset of patients known as 'cepacia syndrome', fulminant pneumonia accompanied by bacteraemia and sepsis with a mortality rate of up to 75%. Due to the bacteraemia associated with this disease, the mechanisms that allow Burkholderia to resist the bactericidal effects of serum complement-depending killing are vital. Antibodies usually promote serum killing; however, we have described 'cloaking antibodies', specific for lipopolysaccharides that paradoxically protect serum-sensitive bacteria from complement-mediated lysis. Cloaking antibodies that protect Pseudomonas aeruginosa have been found in 24%-41% of patients with chronic lung diseases. The presence of these antibodies is also associated with worse clinical outcomes. Here, we sought to determine the relevance of cloaking antibodies in patients with Burkholderia infection. Methods: Twelve Burkholderia spp. were isolated from nine pwCF and characterised for susceptibility to healthy control serum. Patient serum was analysed for the titre of the cloaking antibody. The ability of the patient serum to prevent healthy control serum (HCS) killing of its cognate isolates was determined. Results: We found that several of the Burkholderia strains were shared between patients. Ten of the 12 isolates were highly susceptible to HCS killing. Four of nine (44%) patients had cloaking antibodies that protected their cognate strain from serum killing. Depleting cloaking antibodies from patient serum restored HCS killing of Burkholderia isolates. Discussion: Cloaking antibodies are prevalent in patients with Burkholderia pulmonary infection and protect these strains from serum killing. Removal of cloaking antibodies via plasmapheresis, as previously described for individuals with life-threatening Pseudomonas infection, may be a useful new strategy for those with serious and life-threatening Burkholderia infection.


Subject(s)
Antibodies, Bacterial , Burkholderia Infections , Burkholderia cepacia complex , Humans , Burkholderia Infections/immunology , Burkholderia Infections/microbiology , Antibodies, Bacterial/blood , Burkholderia cepacia complex/immunology , Cystic Fibrosis/complications , Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Female , Male , Adult , Lipopolysaccharides/immunology , Blood Bactericidal Activity , Middle Aged , Bacteremia/microbiology , Bacteremia/immunology
2.
J Infect Dis ; 230(3): e536-e547, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38442240

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is a multidrug-resistant pathogen causing recalcitrant pulmonary infections in people with cystic fibrosis (pwCF). Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been developed that partially correct the defective chloride channel driving disease. Despite the many clinical benefits, studies in adults have demonstrated that while P. aeruginosa sputum load decreases, chronic infection persists. Here, we investigate how P. aeruginosa in pwCF may change in the altered lung environment after CFTR modulation. METHODS: P. aeruginosa strains (n = 105) were isolated from the sputum of 11 chronically colonized pwCF at baseline and up to 21 months posttreatment with elexacaftor-tezacaftor-ivacaftor or tezacaftor-ivacaftor. Phenotypic characterization and comparative genomics were performed. RESULTS: Clonal lineages of P. aeruginosa persisted after therapy, with no evidence of displacement by alternative strains. We identified commonly mutated genes among patient isolates that may be positively selected for in the CFTR-modulated lung. However, classic chronic P. aeruginosa phenotypes such as mucoid morphology were sustained, and isolates remained just as resistant to clinically relevant antibiotics. CONCLUSIONS: Despite the clinical benefits of CFTR modulators, clonal lineages of P. aeruginosa persist that may prove just as difficult to manage in the future, especially in pwCF with advanced lung disease.


Subject(s)
Aminophenols , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Drug Combinations , Pseudomonas Infections , Pseudomonas aeruginosa , Quinolones , Sputum , Humans , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Aminophenols/therapeutic use , Aminophenols/pharmacology , Quinolones/therapeutic use , Quinolones/pharmacology , Sputum/microbiology , Indoles/therapeutic use , Indoles/pharmacology , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Adult , Female , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation , Persistent Infection/microbiology , Pyridines , Quinolines
3.
Infect Immun ; 89(12): e0041221, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34460286

ABSTRACT

Pseudomonas aeruginosa is one of the principal pathogens implicated in respiratory infections of patients with cystic fibrosis (CF) and non-CF bronchiectasis. Previously, we demonstrated that impaired serum-mediated killing of P. aeruginosa was associated with increased severity of respiratory infections in patients with non-CF bronchiectasis. This inhibition was mediated by high titers of O-antigen-specific IgG2 antibodies that cloak the surface of the bacteria, blocking access to the membrane. Infection-related symptomatology was ameliorated in patients by using plasmapheresis to remove the offending antibodies. To determine if these inhibitory "cloaking antibodies" were prevalent in patients with CF, we investigated 70 serum samples from patients with P. aeruginosa infection and 5 from those without P. aeruginosa infection. Of these patients, 32% had serum that inhibited the ability of healthy control serum to kill P. aeruginosa. Here, we demonstrate that this inhibition of killing requires O-antigen expression. Furthermore, we reveal that while IgG alone can inhibit the activity of healthy control serum, O-antigen-specific IgA in patient sera can also inhibit serum-killing. We found that antibody affinity, not just titer, was also important in the inhibition of serum-mediated killing. These studies provide novel insight into cloaking antibodies in human infection and may provide further options in CF and other diseases for treatment of recalcitrant P. aeruginosa infections.


Subject(s)
Antibodies, Bacterial/immunology , Cystic Fibrosis/complications , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Lipopolysaccharides/immunology , Pseudomonas Infections/etiology , Pseudomonas aeruginosa/immunology , Complement System Proteins/immunology , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood
4.
J Heart Lung Transplant ; 40(9): 951-959, 2021 09.
Article in English | MEDLINE | ID: mdl-34226118

ABSTRACT

BACKGROUND: Chronic Lung Allograft Dysfunction (CLAD) limits long-term survival following lung transplantation. Colonization of the allograft by Pseudomonas aeruginosa is associated with an increased risk of CLAD and inferior overall survival. Recent experimental data suggests that 'cloaking' antibodies targeting the O-antigen of the P. aeruginosa lipopolysaccharide cell wall (cAbs) attenuate complement-mediated bacteriolysis in suppurative lung disease. METHODS: In this retrospective cohort analysis of 123 lung transplant recipients, we evaluated the prevalence, risk factors and clinical impact of serum cAbs following transplantation. RESULTS: cAbs were detected in the sera of 40.7% of lung transplant recipients. Cystic fibrosis and younger age were associated with increased risk of serum cAbs (CF diagnosis, OR 6.62, 95% CI 2.83-15.46, p < .001; age at transplant, OR 0.69, 95% CI 0.59-0.81, p < .001). Serum cAbs and CMV mismatch were both independently associated with increased risk of CLAD (cAb, HR 4.34, 95% CI 1.91-9.83, p < .001; CMV mismatch (D+/R-), HR 5.40, 95% CI 2.36-12.32, p < .001) and all-cause mortality (cAb, HR 2.75, 95% CI 1.27-5.95, p = .010, CMV mismatch, HR 3.53, 95% CI 1.62-7.70, p = .002) in multivariable regression analyses. CONCLUSIONS: Taken together, these findings suggest a potential role for 'cloaking' antibodies targeting P. aeruginosa LPS O-antigen in the immunopathogenesis of CLAD.


Subject(s)
Antibodies, Bacterial/blood , Lung Transplantation/adverse effects , Pseudomonas aeruginosa/immunology , Transplant Recipients , Adolescent , Adult , Aged , Biomarkers/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL