Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(33): 13554-13565, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37555784

ABSTRACT

A group of (doped N or P) carbons were synthesized using soluble starch as a carbon precursor. Further, ceria nanoparticles (NPs) were confined into these (doped) carbon materials. The obtained solids were characterized by various techniques such as N2 physisorption, XRD, TEM, SEM, XPS, and XAS. These materials were used as catalysts for the oxidative coupling between benzyl alcohol and aniline as the model reaction. Ceria immobilized on mesoporous-doped carbon shows higher activity than the other materials, benchmark catalysts, and most of the previously reported catalysts. The control of the ceria NP size, the presence of Ce3+ cations, and an increment in the disorder in the ceria NP structure caused by a support-ceria interaction could increase the number of oxygen vacancies and improve its catalytic performance. CN-meso/CeO2 was also used as the catalyst for a rich scope of substrates, such as substituted aromatic alcohols, linear alcohols, and different types of amines. The influence of various reaction parameters (substrate content, reaction temperature, and catalyst content) on the activity of this catalyst was also checked.

2.
J Inorg Biochem ; 203: 110884, 2020 02.
Article in English | MEDLINE | ID: mdl-31683129

ABSTRACT

The Eu3+ and Sr2+ ions co-doped hydroxyapatite nanopowders (Ca10(PO4)6(OH)2) were synthesized via a precipitation method and post heat-treated at 500 °C. The concentration of Eu3+ ions was established in the range of 0.5-5 mol% to investigate the site occupancy preference. The concentration of Sr2+ ions was set at 5 mol%. The structural and morphological properties of the obtained materials were studied by an X-ray powder diffraction, a transmission electron microscopy techniques and infrared spectroscopy. As synthesized nanoparticles were in the range of 11-17 nm and annealed particles were in the range of 20-26 nm. The luminescence properties in dependence of the dopant concentration and applied temperature were investigated. The 5D0 → 7F0 transition shown the abnormally strong intensity for annealed materials connected with the increase of covalency character of Eu3+-O2- bond, which arise as an effect of charge compensation mechanism. The Eu3+ ions occupied three possible crystallographic sites in these materials revealed in emission spectra: one Ca(1) site with C3 symmetry and two Ca(2) sites with Cs symmetry arranged as cis and trans symmetry. The antibacterial properties of Eu3+ and Sr2+ ions doped and co-doped hydroxyapatite nanopowders were also determined against Gram-negative pathogens such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. Obtained results suggest that both europium and strontium ions may implement antibacterial properties for hydroxyapatites. In the most cases, better antibacterial effect we noticed for dopants at 5 mol% ratio. However, the effect is strongly species- and strain-dependent feature.


Subject(s)
Anti-Bacterial Agents/pharmacology , Europium/chemistry , Hydroxyapatites/pharmacology , Nanoparticles/chemistry , Strontium/chemistry , Anti-Bacterial Agents/chemical synthesis , Enterobacteriaceae/drug effects , Escherichia coli/drug effects , Hydroxyapatites/chemical synthesis , Klebsiella pneumoniae/drug effects , Luminescence , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...