Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
SLAS Technol ; 29(4): 100146, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844139

ABSTRACT

Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.

2.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38268238

ABSTRACT

Cigarette smoking poses various health risks, such as increasing the susceptibility to respiratory infections, contributing to osteoporosis, causing reproductive issues, delaying postoperative recovery, promoting ulcer formation and heightening the risk of diabetes. While many harmful effects of smoking are attributed to other cigarette components, it is nicotine's pharmacological effects that underlie tobacco addiction. Nicotine replacement therapy (NRT) aims to alleviate the urge to smoke and mitigate physiological and psychomotor withdrawal symptoms by delivering nicotine. This study explores the potential of sesquiterpene derivative compounds derived from the Cinnamomum genus using computational techniques. The research incorporates molecular docking analyses, Lipinski's rule of five filtration for drug-likeness, pharmacokinetic and toxicity predictions to assess safety profiles and molecular dynamics (MD) simulations to gauge interaction stability. The findings reveal that all sesquiterpene derivative compounds from the Cinnamomum genus can potentially inhibit nicotinic acetylcholine receptors (nAChRs), particularly nAChRÿ7. However, only abscisic acid exhibit active inhibition, along with suitable drug properties, pharmacokinetics and toxicity profiles. MD studies confirm the stability of interactions between abscisic acid with nAChRÿ7. Consequently, abscisic acid, as sesquiterpene derivatives from the Cinnamomum genus, holds substantial promise for further investigation as nAChRÿ7 inhibitors.Communicated by Ramaswamy H. Sarma.

3.
Protein Sci ; 33(2): e4873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38111376

ABSTRACT

The canine anti-tumor necrosis factor-alpha (TNF-α) monoclonal antibody is a potential therapeutic option for treating canine arthritis. The current treatments for arthritis in dogs have limitations due to side effects, emphasizing the need for safer and more effective therapies. The crystal structure of canine TNF-α (cTNF-α) was successfully determined at a resolution of 1.85 Å, and the protein was shown to assemble as a trimer, with high similarity to the functional quaternary structure of human TNF-α (hTNF-α). Adalimumab (Humira), a known TNF-α inhibitor, effectively targets and neutralizes TNF-α to reduce inflammation and has been used to manage autoimmune conditions such as rheumatoid arthritis. By comparing the structure of cTNF-α with the complex structure of hTNF-α and adalimumab-Fab, the epitope of adalimumab on cTNF-α was identified. The significant structural similarities of epitopes in cTNF-α and hTNF-α indicate the potential of using adalimumab to target cTNF-α. Therefore, a canine/human chimeric antibody, Humivet-R1, was created by grafting the variable domain of adalimumab onto a canine antibody framework derived from ranevetmab. Humivet-R1 exhibits potent neutralizing ability (IC50 = 0.05 nM) and high binding affinity (EC50 = 0.416 nM) to cTNF-α, comparable to that of adalimumab for both hTNF-α and cTNF-α. These results strongly suggest that Humivet-R1 has the potential to provide effective treatment for canine arthritis with reduced side effects. Here, we propose a structure-guided antibody design for the use of a chimeric antibody to treat canine inflammatory disease. Our successful development strategy can speed up therapeutic antibody discovery for animals and has the potential to revolutionize veterinary medicine.


Subject(s)
Arthritis, Rheumatoid , Tumor Necrosis Factor-alpha , Dogs , Animals , Humans , Adalimumab/pharmacology , Adalimumab/therapeutic use , Antibodies, Monoclonal , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology
4.
Biochem Biophys Res Commun ; 688: 149214, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37951154

ABSTRACT

Pancreatic adenocarcinoma, a highly aggressive form of cancer with a poor prognosis, necessitates the development of innovative treatment strategies. Our prior research showcased the growth-inhibiting effects of the anti-EphA2 antibody drug hSD5 on pancreatic cancer tumors. This antibody targets and induces the degradation of the EphA2 receptor while also prompting the antibody's internalization. A deeper dive into the hSD5 Fab crystallographic structure and docking studies revealed that hSD5's CDRH3 drives the primary interaction between hSD5 and the EphA2 active site. In this study, we developed a novel antibody-drug conjugate (ADC)-the auristatin-based hSD5-vedotin specifically targeting EphA2 in pancreatic cancer cells. This ADC aims at the tumor-specific antigen EphA2, triggering endocytosis and releasing the conjugated payload molecule Monomethyl auristatin E (MMAE), amplifying the tumor-killing effect. Upon cellular entry, hSD5-vedotin demonstrated an impressive tumor-killing response, inhibiting tumor cell growth and promoting apoptosis even at lower antibody concentrations. In a pancreatic cancer xenograft animal model, hSD5-vedotin showcased the potential to suppress tumor growth entirely. Notably, potential immune resistance responses were also observed in recurrent pancreatic cancer tumors. Our empirical results underscore the possibility of developing hSD5-vedotin further, which we anticipate will have a broader and more potent therapeutic impact on pancreatic cancer and other EphA2-related cancers.


Subject(s)
Adenocarcinoma , Immunoconjugates , Pancreatic Neoplasms , Animals , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Pancreatic Neoplasms/pathology , Adenocarcinoma/drug therapy , Cell Line, Tumor , Neoplasm Recurrence, Local , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
5.
Science ; 382(6674): eadd7795, 2023 12.
Article in English | MEDLINE | ID: mdl-38033054

ABSTRACT

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Subject(s)
Archaeal Proteins , DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Methanosarcina , Pyrimidine Dimers , Archaeal Proteins/chemistry , Catalysis , Crystallography/methods , Deoxyribodipyrimidine Photo-Lyase/chemistry , DNA/chemistry , DNA/radiation effects , Methanosarcina/enzymology , Protein Conformation , Pyrimidine Dimers/chemistry , Ultraviolet Rays
6.
Talanta ; 265: 124892, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37451119

ABSTRACT

Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.


Subject(s)
Biosensing Techniques , Influenza A virus , Influenza in Birds , Nanoparticles , Nanostructures , Animals , Humans , Influenza in Birds/diagnosis , Biosensing Techniques/methods
7.
Am J Cancer Res ; 13(4): 1209-1239, 2023.
Article in English | MEDLINE | ID: mdl-37168336

ABSTRACT

Nuclear epidermal growth factor receptor (EGFR) has been shown to be correlated with drug resistance and a poor prognosis in patients with cancer. Previously, we have identified a tripartite nuclear localization signal (NLS) within EGFR. To comprehensively determine the functions and underlying mechanism of nuclear EGFR and its clinical implications, we aimed to explore the nuclear export signal (NES) sequence of EGFR that is responsible for interacting with the exportins. We combined in silico prediction with site-directed mutagenesis approaches and identified a putative NES motif of EGFR, which is located in amino acid residues 736-749. Mutation at leucine 747 (L747) in the EGFR NES led to increased nuclear accumulation of the protein via a less efficient release of the exportin CRM1. Interestingly, L747 with serine (L747S) and with proline (L747P) mutations were found in both tyrosine kinase inhibitor (TKI)-treated and -naïve patients with lung cancer who had acquired or de novo TKI resistance and a poor outcome. Reconstituted expression of the single NES mutant EGFRL747P or EGFRL747S, but not the dual mutant along with the internalization-defective or NLS mutation, in lung cancer cells promoted malignant phenotypes, including cell migration, invasiveness, TKI resistance, and tumor initiation, supporting an oncogenic role of nuclear EGFR. Intriguingly, cells with germline expression of the NES L747 mutant developed into B cell lymphoma. Mechanistically, nuclear EGFR signaling is required for sustaining nuclear activated STAT3, but not for Erk. These findings suggest that EGFR functions are compartmentalized and that nuclear EGFR signaling plays a crucial role in tumor malignant phenotypes, leading to tumorigenesis in human cancer.

8.
J Biol Eng ; 17(1): 30, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095503

ABSTRACT

BACKGROUND: The main commercially available methods for detecting small molecules of mycotoxins in traditional Chinese medicine (TCM) and functional foods are enzyme-linked immunosorbent assay and mass spectrometry. Regarding the development of diagnostic antibody reagents, effective methods for the rapid preparation of specific monoclonal antibodies are inadequate. METHODS: In this study, a novel synthetic phage-displayed nanobody Golden Glove (SynaGG) library with a glove-like cavity configuration was established using phage display technology in synthetic biology. We applied this unique SynaGG library on the small molecule aflatoxin B1 (AFB1), which has strong hepatotoxicity, to isolate specific nanobodies with high affinity for AFB1. RESULT: These nanobodies exhibit no cross-reactivity with the hapten methotrexate, which is recognized by the original antibody template. By binding to AFB1, two nanobodies can neutralize AFB1-induced hepatocyte growth inhibition. Using molecular docking, we found that the unique non-hypervariable complementarity-determining region 4 (CDR4) loop region of the nanobody was involved in the interaction with AFB1. Specifically, the CDR4's positively charged amino acid arginine directed the binding interaction between the nanobody and AFB1. We then rationally optimized the interaction between AFB1 and the nanobody by mutating serine at position 2 into valine. The binding affinity of the nanobody to AFB1 was effectively improved, and this result supported the use of molecular structure simulation for antibody optimization. CONCLUSION: In summary, this study revealed that the novel SynaGG library, which was constructed through computer-aided design, can be used to isolate nanobodies that specifically bind to small molecules. The results of this study could facilitate the development of nanobody materials to detect small molecules for the rapid screening of TCM materials and foods in the future.

9.
Anal Chem ; 94(51): 17819-17826, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36512513

ABSTRACT

Dengue fever is a global mosquito-borne viral infectious disease that has, in recent years, rapidly spread to almost all regions of the world. Lack of vaccination and directed treatment makes detection at the infection's early stages extremely important for disease prevention and clinical care. In this paper, we developed a rapid and highly sensitive dengue detection tool using a novel platform of diagnosis, called spin-enhanced lateral flow immunoassay (SELFIA) with a fluorescent nanodiamond (FND) as a reporter. Taking advantage of the unique magneto-optical properties of negatively charged nitrogen-vacancy centers in the FND, the SELFIA platform utilizes alternating electromagnetic fields to modulate signals from FND's fluorescence to provide sensitive and specific results. With sandwich SELFIA, we could efficiently detect all four dengue non-structural protein (NS1) serotypes (DV1, DV2, DV3, and DV4). The lowest detection concentration of the dengue NS1 antigens varied from 0.1 to 1.3 ng/mL, which is among the lowest limits of detection to date. The FND-based SELFIA technique is up to 500 and 5000 times more sensitive than carbon black and conventional gold nanoparticles, respectively. By using different anti-NS1 antibodies, we could differentiate the NS1 antigen serotypes contained in the tested samples via three simultaneous assays. Proposed SELFIA allows for both qualitative and quantitative differentiation between different NS1 protein serotypes, which will assist in the development of a highly sensitive and specific detection platform for dengue screening that has the potential to detect the disease at its early stages, especially in high-risk and limited-resource areas.


Subject(s)
Dengue Virus , Dengue , Metal Nanoparticles , Animals , Humans , Serogroup , Gold , Viral Nonstructural Proteins , Immunoassay/methods , Antibodies, Viral , Dengue/diagnosis , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay/methods
10.
Anal Chim Acta ; 1230: 340389, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36192062

ABSTRACT

SARS-CoV-2 viruses, responsible for the COVID-19 pandemic, continues to evolve into new mutations, which poses a significant threat to public health. Current testing methods have some limitations, such as long turnaround times, high costs, and professional laboratory requirements. In this report, the novel Spin-Enhanced Lateral Flow Immunoassay (SELFIA) platform and fluorescent nanodiamond (FND) reporter were utilized for the rapid detection of SARS-CoV-2 nucleocapsid and spike antigens from different variants, including wild-type (Wuhan-1), Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529). The SARS-CoV-2 antibodies were conjugated with FND via nonspecific binding, enabling the detection of SARS-CoV-2 antigens via both direct and competitive SELFIA format. Direct SELFIA was performed by directly adding the SARS-CoV-2 antibodies-conjugated FND on the antigens-immobilized nitrocellulose (NC) membrane. Conversely, the SARS-CoV-2 antigen-containing sample was first incubated with the antibodies-conjugated FND, and then dropped on the antigen-immobilized NC membrane to carry out the competitive SELFIA. The results suggested that S44F anti-S IgG antibody can be efficiently used for the detection of wild-type, Alpha, Delta, and Omicron variants spike antigens. Findings were comparable in direct SELFIA, competitive SELFIA, and ELISA. A detection limit of 1.94, 0.77, 1.14, 1.91, and 1.68 ng/mL can be achieved for SARS-CoV-2 N protein, wild-type, Alpha, Delta, and Omicron S proteins, respectively, via competitive SELFIA assay. These results suggest that a direct SELFIA assay can be used for antibody/antigen pair screening in diagnosis development, while the competitive SELFIA assay can serve as an accurate quantitative diagnostic tool. The simplicity and rapidity of the SELFIA platform were demonstrated, which can be leveraged in the detection of other infectious diseases in the near future.


Subject(s)
COVID-19 , Nanodiamonds , Antibodies, Viral , COVID-19/diagnosis , Collodion , Humans , Immunoassay/methods , Immunoglobulin G , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Nat Chem ; 14(6): 677-685, 2022 06.
Article in English | MEDLINE | ID: mdl-35393554

ABSTRACT

Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Protons , Arginine/metabolism , Crystallography , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Electron Transport , Electrons , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flavins , Oxidation-Reduction
12.
Biomed Pharmacother ; 146: 112580, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34968920

ABSTRACT

The dysregulation of DYRK1A is implicated in many diseases such as cancer, diabetes, and neurodegenerative diseases. Alzheimer's disease is one of the most common neurodegenerative disease and has elevated interest in DYRK1A research. Overexpression of DYRK1A has been linked to the formation of tau aggregates. Currently, an effective therapeutic treatment that targets DYRK1A is lacking. A specific small-molecule inhibitor would further our understanding of the physiological role of DYRK1A in neurodegenerative diseases and could be presented as a possible therapeutic option. In this study, we identified pharmacological interactions within the DYRK1A active site and performed a structure-based virtual screening approach to identify a selective small-molecule inhibitor. Several compounds were selected in silico for enzymatic and cellular assays, yielding a novel inhibitor. A structure-activity relationship analysis was performed to identify areas of interactions for the compounds selected in this study. When tested in vitro, reduction of DYRK1A dependent phosphorylation of tau was observed for active compounds. The active compounds also improved tau turbidity, suggesting that these compounds could alleviate aberrant tau aggregation. Testing the active compound against a panel of kinases across the kinome revealed greater selectivity towards DYRK1A. Our study demonstrates a serviceable protocol that identified a novel and selective DYRK1A inhibitor with potential for further study in tau-related pathologies.


Subject(s)
Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Cell Line , Phosphorylation , Structure-Activity Relationship , Tubulin/drug effects , tau Proteins/drug effects , Dyrk Kinases
13.
FEBS J ; 289(3): 730-747, 2022 02.
Article in English | MEDLINE | ID: mdl-34499806

ABSTRACT

Specific antibody interactions with short peptides have made epitope tagging systems a vital tool employed in virtually all fields of biological research. Here, we present a novel epitope tagging system comprised of a monoclonal antibody named GD-26, which recognises the TD peptide (GTGATPADD) derived from Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant. The crystal structure of the antigen-binding fragment (Fab) of GD-26 complexed with the TD peptide was determined to a resolution of 1.45 Å. The TD peptide was found to adopt a 310 helix conformation within the binding cleft, providing a characteristic peptide structure for recognition by GD-26 Fab. Based on the structure information, polar and nonpolar forces collectively contribute to the strong binding. Attempts to engineer the TD peptide show that the proline residue is crucial for the formation of the 310 helix in order to fit into the binding cleft. Isothermal calorimetry (ITC) reported a dissociation constant KD of 12 ± 2.8 nm, indicating a strong interaction between the TD peptide and GD-26 Fab. High specificity of GD-26 IgG to the TD peptide was demonstrated by western blotting, ELISA and immunofluorescence as only TD-tagged proteins were detected, suggesting the effectiveness of the GD-26/TD peptide tagging system. In addition to already-existing epitope tags such as the FLAG tag and the ALFA tag adopting either extended or α-helix conformations, the unique 310 helix conformation of the TD peptide together with the corresponding monoclonal antibody GD-26 offers a novel tagging option for research.


Subject(s)
Antibodies, Monoclonal/immunology , Bacteriorhodopsins/immunology , Epitopes/immunology , Peptides/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/ultrastructure , Antibody Specificity/genetics , Bacteriorhodopsins/genetics , Bacteriorhodopsins/ultrastructure , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitopes/genetics , Epitopes/ultrastructure , Haloarcula marismortui/immunology , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Peptides/genetics
14.
Biochemistry ; 60(51): 3856-3867, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34910875

ABSTRACT

The T-cell protein tyrosine phosphatase (TCPTP/PTPN2) targets a broad variety of substrates across different subcellular compartments. In spite of that, the structural basis for the regulation of TCPTP's activity remains elusive. Here, we investigated whether the activity of TCPTP is regulated by a potential allosteric site in a comparable manner to its most similar PTP family member (PTP1B/PTPN1). We determined two crystal structures of TCPTP at 1.7 and 1.9 Å resolutions that include helix α7 at the TCPTP C-terminus. Helix α7 has been functionally characterized in PTP1B and was identified as its allosteric switch. However, its function is unknown in TCPTP. Here, we demonstrate that truncation or deletion of helix α7 reduced the catalytic efficiency of TCPTP by ∼4-fold. Collectively, our data supports an allosteric role of helix α7 in regulation of TCPTP's activity, similar to its function in PTP1B, and highlights that the coordination of helix α7 with the core catalytic domain is essential for the efficient catalytic function of TCPTP.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 2/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Allosteric Regulation , Allosteric Site/genetics , Amino Acid Sequence , Amino Acid Substitution , Biophysical Phenomena , Catalytic Domain/genetics , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation, alpha-Helical , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
15.
Biosensors (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34562885

ABSTRACT

The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.


Subject(s)
COVID-19 Testing/instrumentation , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Artificial Intelligence , COVID-19/immunology , COVID-19 Testing/economics , Humans , Immunoassay , Point-of-Care Testing , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Smartphone
16.
IUBMB Life ; 73(2): 418-431, 2021 02.
Article in English | MEDLINE | ID: mdl-33372380

ABSTRACT

Vibrio cholerae is the causative agent of the diarrheal disease cholera, for which biofilm communities are considered to be environmental reservoirs. In endemic regions, and after algal blooms, which may result from phosphate enrichment following agricultural runoff, the bacterium is released from biofilms resulting in seasonal disease outbreaks. However, the molecular mechanism by which V. cholerae senses its environment and switches lifestyles from the biofilm-bound state to the planktonic state is largely unknown. Here, we report that the major biofilm scaffolding protein RbmA undergoes autocatalytic proteolysis via a phosphate-dependent induced proximity activation mechanism. Furthermore, we show that RbmA mutants that are defective in autoproteolysis cause V. cholerae biofilms to grow larger and mechanically stronger, correlating well with the observation that RbmA stability directly affects microbial community homeostasis and rheological properties. In conclusion, our biophysical study characterizes a novel phosphate-dependent breakdown pathway of RbmA, while microbiological data suggest a new, sensory role of this biofilm scaffolding element.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/drug effects , Magnesium Compounds/pharmacology , Phosphates/pharmacology , Proteolysis , Vibrio cholerae/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Vibrio cholerae/drug effects , Vibrio cholerae/growth & development
17.
J Mol Biol ; 433(4): 166766, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33359099

ABSTRACT

Interleukin-1ß (IL-1ß) is a potent pleiotropic cytokine playing a central role in protecting cells from microbial pathogen infection or endogenous stress. After it binds to IL-1RI and recruits IL-1 receptor accessory protein (IL-1RAcP), signaling culminates in activation of NF-κB. Many pathophysiological diseases have been attributed to the derailment of IL-1ß regulation. Several blocking reagents have been developed based on two mechanisms: blocking the binding of IL-1ß to IL-1RI or inhibiting the recruitment of IL-1RAcP to the IL-1ß initial complex. In order to simultaneously fulfill these two actions, a human anti-IL-1ß neutralizing antibody IgG26 was screened from human genetic phage-display library and furthered structure-optimized to final version, IgG26AW. IgG26AW has a sub-nanomolar binding affinity for human IL-1ß. We validated IgG26AW-neutralizing antibodies specific for IL-1ß in vivo to prevent human IL-1ß-driving IL-6 elevation in C56BL/6 mice. Mice underwent treatments with IgG26AW in A549 and MDA-MB-231 xenograft mouse cancer models have also been observed with tumor shrank and inhibition of tumor metastasis. The region where IgG26 binds to IL-1ß also overlaps with the position where IL-1RI and IL-1RAcP bind, as revealed by the 26-Fab/IL-1ß complex structure. Meanwhile, SPR experiments showed that IL-1ß bound by IgG26AW prevented the further binding of IL-1RI and IL-1RAcP, which confirmed our inference from the result of protein structure. Therefore, the inhibitory mechanism of IgG26AW is to block the assembly of the IL-1ß/IL-1RI/IL-1RAcP ternary complex which further inhibits downstream signaling. Based on its high affinity, high neutralizing potency, and novel binding epitope simultaneously occupying both IL-1RI and IL-1RAcP residues that bind to IL-1ß, IgG26AW may be a new candidate for treatments of inflammation-related diseases or for complementary treatments of cancers in which the role of IL-1ß is critical to pathogenesis.


Subject(s)
Antibodies, Blocking/chemistry , Antibodies, Monoclonal/chemistry , Interleukin-1 Receptor Accessory Protein/chemistry , Interleukin-1beta/chemistry , Models, Molecular , Protein Conformation , Receptors, Interleukin-1 Type I/chemistry , Animals , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Binding Sites , Cell Line, Tumor , Epitope Mapping/methods , Epitopes/immunology , Humans , Immunoglobulin G/chemistry , Interleukin-1 Receptor Accessory Protein/metabolism , Interleukin-1beta/metabolism , Mice , Models, Biological , NF-kappa B/metabolism , Peptide Library , Protein Binding/drug effects , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction , Structure-Activity Relationship , Xenograft Model Antitumor Assays
18.
Opt Express ; 28(26): 39781-39789, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379520

ABSTRACT

We report a highly efficient polariton organic light-emitting diode (POLED) based on an intracavity pumping architecture, where an absorbing J-aggregate dye film is used to generate polariton modes and a red fluorescent OLED is used for radiative pumping of emission from the lower polariton (LP) branch. To realize the device with large-area uniformity and adjustable coupling strength, we develop a spin-coating method to achieve high-quality J-aggregate thin films with controlled thickness and absorption. From systematic studies of the devices with different J-aggregate film thicknesses and OLED injection layers, we show that the J-aggregate film and the pump OLED play separate roles in determining the coupling strength and electroluminescence efficiency, and can be simultaneously optimized under a cavity design with a good LP-OLED emission overlap for effective radiative pumping. By increasing the absorption with thick J-aggregate film and improving the electron injection of pump OLED with Li2CO3 interlayer, we demonstrate the POLED with a large Rabi splitting energy of 192 meV and a maximum external quantum efficiency of 1.2%, a record efficiency of POLEDs reported so far. This POLED architecture can be generally applied for exploration of various organic materials to realize novel polariton devices and electrically pumped lasers.

19.
Appl Opt ; 59(32): 10138-10142, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33175790

ABSTRACT

In this paper, we propose a broadband omnidirectional near-perfect absorber that transforms light energy into heat. In contrast to previous research on structural metamaterials, this study focuses on light absorption in the epsilon-near-zero (ENZ) layers without any structural patterns. Chromium (Cr) thin films were applied as ENZ layers. Using the admittance method, we found the proper thicknesses of SiO2 layers to match the incident medium and achieve perfect absorption. Also, the absorber is angular insensitive up to 60°. The temperature of the absorber increases from room temperature to 42°C, which is 4°C higher than the uncoated substrate at 38°C, after exposure to sunlight for 20 min.

20.
PLoS One ; 15(9): e0239813, 2020.
Article in English | MEDLINE | ID: mdl-32986768

ABSTRACT

Two systems of antibody-drug conjugates (ADCs), noncleavable H32-DM1 and cleavable H32-VCMMAE, were developed by using different linkers and drugs attached to the anti-HER2 antibody H32, which is capable of cell internalization. Activated functional groups, including an N-hydroxysuccinimidyl (NHS) ester and a maleimide, were utilized to make the ADCs. Mass spectrometry, hydrophobic interaction chromatography, polyacrylamide gel electrophoresis, and in vitro cell assays were performed to analyze and optimize the ADCs. Several H32-VCMMAE ADCs were established with higher DARs and greater synthetic yields without compromising potency. The anticancer efficacy of H32-DM1 was 2- to 8-fold greater than that of Kadcyla®. The efficacy of H32-VCMMAE was in turn better than that of H32-DM1. The anticancer efficacy of these ADCs against N87, SK-BR-3 and BT474 cells was in the following order: H32-VCMMAE series > H32-DM1 series > Kadcyla®. The optimal DAR for H32-VCMMAE was found to be 6.6, with desirable attributes including good cell penetration, a releasable payload in cancer cells, and high potency. Our results demonstrated the potential of H32-VCMMAE as a good ADC candidate.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/metabolism , Immunoconjugates/pharmacology , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Ado-Trastuzumab Emtansine/chemistry , Ado-Trastuzumab Emtansine/pharmacology , Antibodies, Monoclonal, Humanized/chemistry , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Immunoconjugates/chemistry , Inhibitory Concentration 50 , Oligopeptides/chemistry , Oligopeptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL