Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 15(10): e1008451, 2019 10.
Article in English | MEDLINE | ID: mdl-31658259

ABSTRACT

E-cadherin complexes with the actin cytoskeleton via cytoplasmic catenins and maintains the functional characteristics and integrity of the epithelia in normal epithelial tissues. Lost expression of E-cadherin disrupts this complex resulting in loss of cell polarity, epithelial denudation and increased epithelial permeability in a variety of tissues. Decreased expression of E-cadherin has also been observed in invasive and metastatic human tumors. In this study, we investigated the effect of E-cadherin loss in prostatic epithelium using newly developed genetically engineered mouse models. Deletion of E-cadherin in prostatic luminal epithelial cells with modified probasin promoter driven Cre (PB-Cre4) induced the development of mouse prostatic intraepithelial neoplasia (PIN). An increase in levels of cytoplasmic and nuclear ß-catenin appeared in E-cadherin deleted atypical cells within PIN lesions. Using various experimental approaches, we further demonstrated that the knockdown of E-cadherin expression elevated free cytoplasmic and nuclear ß-catenin and enhanced androgen-induced transcription and cell growth. Intriguingly, pathological changes representing prostatic epithelial cell denudation and increased apoptosis accompanied the above PIN lesions. The essential role of E-cadherin in maintaining prostatic epithelial integrity and organization was further demonstrated using organoid culture approaches. To directly assess the role of loss of E-cadherin in prostate tumor progression, we generated a new mouse model with bigenic Cdh1 and Pten deletion in prostate epithelium. Early onset, aggressive tumor phenotypes presented in the compound mice. Strikingly, goblet cell metaplasia was observed, intermixed within prostatic tumor lesions of the compound mice. This study provides multiple lines of novel evidence demonstrating a comprehensive role of E-cadherin in maintaining epithelial integrity during the course of prostate oncogenic transformation, tumor initiation and progression.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Cell Transformation, Neoplastic/pathology , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/pathology , Animals , Antigens, CD/genetics , Cadherins/genetics , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Disease Progression , Epithelial Cells , Epithelium , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Primary Cell Culture , Prostate/cytology , Prostate/pathology , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Neoplasms/genetics , RNA, Small Interfering , beta Catenin/genetics , beta Catenin/metabolism
2.
PLoS One ; 14(1): e0211153, 2019.
Article in English | MEDLINE | ID: mdl-30677079

ABSTRACT

The tumor suppressor p16Ink4a, encoded by the INK4a gene, is an inhibitor of cyclin D-dependent kinases 4 and 6, CDK4 and CDK6. This inhibition prevents the phosphorylation of the retinoblastoma protein (pRb), resulting in cellular senescence through inhibition of E2F-mediated transcription of S phase genes required for cell proliferation. The p16Ink4a plays an important role in tumor suppression, whereby its deletion, mutation, or epigenetic silencing is a frequently observed genetic alteration in prostate cancer. To assess its roles and related molecular mechanisms in prostate cancer initiation and progression, we generated a mouse model with conditional deletion of p16Ink4a in prostatic luminal epithelium. The mice underwent oncogenic transformation and developed prostatic intraepithelial neoplasia (PIN) from eight months of age, but failed to develop prostatic tumors. Given the prevalence of aberrant androgen signaling pathways in prostate cancer initiation and progression, we then generated R26hARL/wt:p16L/L: PB-Cre4 compound mice, in which conditional expression of the human AR transgene and deletion of p16Ink4a co-occur in prostatic luminal epithelial cells. While R26hARL/wt:PB-Cre4 mice showed no visible pathological changes, R26hARL/wt:p16L/L: PB-Cre4 compound mice displayed an early onset of high-grade PIN (HGPIN), prostatic carcinoma, and metastatic lesions. Strikingly, we observed tumors resembling human sarcomatoid carcinoma with intermixed focal regions of signet ring cell carcinoma (SRCC) in the prostates of the compound mice. Further characterization of these tumors showed they were of luminal epithelial cell origin, and featured characteristics of epithelial to mesenchymal transition (EMT) with enhanced proliferative and invasive capabilities. Our results not only implicate a biological role for AR expression and p16Ink4a deletion in the pathogenesis of prostatic SRCC, but also provide a new and unique genetically engineered mouse (GEM) model for investigating the molecular mechanisms for SRCC development.


Subject(s)
Carcinoma, Signet Ring Cell , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Gene Deletion , Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Receptors, Androgen , Animals , Carcinoma, Signet Ring Cell/genetics , Carcinoma, Signet Ring Cell/metabolism , Carcinoma, Signet Ring Cell/pathology , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Male , Mice , Mice, Transgenic , Neoplasm Invasiveness/genetics , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL