Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 68(9)2023 04 25.
Article in English | MEDLINE | ID: mdl-36990097

ABSTRACT

Objective. The purpose of this study is to assess its human images and its unique capabilities such as the 'on demand' higher spatial resolution and multi-spectral imaging of photon-counting-detector (PCD)-CT.Approach. In this study, the FDA 510(k) cleared mobile PCD-CT (OmniTom Elite) was used. To this end, we imaged internationally certified CT phantoms and a human cadaver head to evaluate the feasibility of high resolution (HR) and multi-energy imaging. We also demonstrate the performance of PCD-CT via first-in-human imaging by scanning three human volunteers.Main results. At the 5 mm slice thickness, routinely used in diagnostic head CT, the first human PCD-CT images were diagnostically equivalent to the EID-CT scanner. The HR acquisition mode of PCD-CT achieved a resolution of 11 line-pairs (lp)/cm as compared to 7 lp cm-1using the same kernel (posterior fossa-kernel) in the standard acquisition mode of EID-CT. For the quantitative multi-energy CT performance, the measured CT numbers in virtual mono-energetic images (VMI) of iodine inserts in the Gammex Multi-Energy CT phantom (model 1492, Sun Nuclear Corporation, USA) matched the manufacturer reference values with mean percent error of 3.25%. Multi-energy decomposition with PCD-CT demonstrated the separation and quantification of iodine, calcium, and water.Significance. PCD-CT can achieve multi-resolution acquisition modes without physically changing the CT detector. It can provide superior spatial resolution compared with the standard acquisition mode the conventional mobile EID-CT. Quantitative spectral capability of PCD-CT can provide accurate, simultaneous multi-energy images for material decomposition and VMI generation using a single exposure.


Subject(s)
Iodine , Photons , Humans , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Head , Phantoms, Imaging
2.
Sci Rep ; 11(1): 3695, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580147

ABSTRACT

A novel motion correction algorithm for X-ray lung CT imaging has been developed recently. It was designed to perform for routine chest or thorax CT scans without gating, namely axial or helical scans with pitch around 1.0. The algorithm makes use of two conjugate partial angle reconstruction images for motion estimation via non-rigid registration which is followed by a motion compensated reconstruction. Differently from other conventional approaches, no segmentation is adopted in motion estimation. This makes motion estimation of various fine lung structures possible. The aim of this study is to explore the performance of the proposed method in correcting the lung motion artifacts which arise even under routine CT scans with breath-hold. The artifacts are known to mimic various lung diseases, so it is of great interest to address the problem. For that purpose, a moving phantom experiment and clinical study (seven cases) were conducted. We selected the entropy and positivity as figure of merits to compare the reconstructed images before and after the motion correction. Results of both phantom and clinical studies showed a statistically significant improvement by the proposed method, namely up to 53.6% (p < 0.05) and up to 35.5% (p < 0.05) improvement by means of the positivity measure, respectively. Images of the proposed method show significantly reduced motion artifacts of various lung structures such as lung parenchyma, pulmonary vessels, and airways which are prominent in FBP images. Results of two exemplary cases also showed great potential of the proposed method in correcting motion artifacts of the aorta which is known to mimic aortic dissection. Compared to other approaches, the proposed method provides an excellent performance and a fully automatic workflow. In addition, it has a great potential to handle motions in wide range of organs such as lung structures and the aorta. We expect that this would pave a way toward innovations in chest and thorax CT imaging.


Subject(s)
Lung/diagnostic imaging , Radiography, Thoracic , Tomography, X-Ray Computed , Algorithms , Artifacts , Humans , Motion
3.
PLoS One ; 15(9): e0239511, 2020.
Article in English | MEDLINE | ID: mdl-32997677

ABSTRACT

A novel cardiac motion correction algorithm has been introduced recently. Unlike other segmentation-based approaches it is fully automatic and capable of correcting motion artifacts of myocardial wall and other moving structures as well as coronary arteries of the heart. In addition, it requires raw data of only less than a single rotation for motion estimation and correction, which is a significant advantage from the perspective of x-ray exposure and workflow. The aim of this study is to explore the capability of the proposed method through phantoms and in-vivo experiments. Motion correction of coronary arteries and other heart structures including myocardial wall is the main focus of the evaluation. First, we provide a brief introduction to the concept of the motion correction algorithm. Next we address the procedure of our studies using an XCAT phantom and commercially available physical phantoms. Results of XCAT phantom demonstrate that our solution significantly improves the structural similarity of coronary arteries compared to FBP (proposed: 0.94, FBP: 0.77, p<0.001). Besides, it provides significantly lower root mean square error (proposed: 20.27, FBP: 25.33, p = 0.01) of the whole heart image. Mocomo phantom study shows that the proposed method improves the visualization of coronary arteries estimated based on motion score (1: worst, 5: best) from two experienced radiologists (proposed: 3.5, FBP: 2.1, p<0.001). The results of these phantom studies reveal that the proposed has a great potential in handling motion artifacts of other heart structures as well as coronary arteries. Finally, we provide the results of in-vivo animal and human studies. The 3D and 4D heart images show a consistently superior performance in the visualization of coronary arteries along with myocardial wall and other cardiothoracic structures. Based on these findings of our studies, we are of the opinion that our solution has a considerable potential to improve temporal resolution of cardiac CT imaging. This would open the door to innovations in structural or functional diagnosis of the heart.


Subject(s)
Heart/physiopathology , Movement/physiology , Myocardium/pathology , Tomography, X-Ray Computed/methods , Algorithms , Animals , Artifacts , Coronary Vessels/pathology , Humans , Motion , Phantoms, Imaging
4.
Med Phys ; 42(1): 335-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25563273

ABSTRACT

PURPOSE: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. METHODS: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient's body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a gradient-based similarity measure. Finally, if needed, they obtain the position information of the liver lesion using the 3D preoperative image to which the registered 2D preoperative slice belongs. RESULTS: The proposed method was applied to 23 clinical datasets and quantitative evaluations were conducted. With the exception of one clinical dataset that included US images of extremely low quality, 22 datasets of various liver status were successfully applied in the evaluation. Experimental results showed that the registration error between the anatomical features of US and preoperative MR images is less than 3 mm on average. The lesion tracking error was also found to be less than 5 mm at maximum. CONCLUSIONS: A new system has been proposed for real-time registration between 2D US and successive multiple 3D preoperative MR/CT images of the liver and was applied for indirect lesion tracking for image-guided intervention. The system is fully automatic and robust even with images that had low quality due to patient status. Through visual examinations and quantitative evaluations, it was verified that the proposed system can provide high lesion tracking accuracy as well as high registration accuracy, at performance levels which were acceptable for various clinical applications.


Subject(s)
Imaging, Three-Dimensional/methods , Liver Diseases/diagnostic imaging , Liver Diseases/pathology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Intraoperative Period , Liver/diagnostic imaging , Liver/pathology , Liver/physiopathology , Liver/surgery , Liver Diseases/physiopathology , Liver Diseases/surgery , Motion , Pattern Recognition, Automated/methods , Preoperative Period , Respiration , Ultrasonography
5.
Phys Med Biol ; 57(1): 69-91, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22126813

ABSTRACT

The registration of a three-dimensional (3D) ultrasound (US) image with a computed tomography (CT) or magnetic resonance image is beneficial in various clinical applications such as diagnosis and image-guided intervention of the liver. However, conventional methods usually require a time-consuming and inconvenient manual process for pre-alignment, and the success of this process strongly depends on the proper selection of initial transformation parameters. In this paper, we present an automatic feature-based affine registration procedure of 3D intra-operative US and pre-operative CT images of the liver. In the registration procedure, we first segment vessel lumens and the liver surface from a 3D B-mode US image. We then automatically estimate an initial registration transformation by using the proposed edge matching algorithm. The algorithm finds the most likely correspondences between the vessel centerlines of both images in a non-iterative manner based on a modified Viterbi algorithm. Finally, the registration is iteratively refined on the basis of the global affine transformation by jointly using the vessel and liver surface information. The proposed registration algorithm is validated on synthesized datasets and 20 clinical datasets, through both qualitative and quantitative evaluations. Experimental results show that automatic registration can be successfully achieved between 3D B-mode US and CT images even with a large initial misalignment.


Subject(s)
Imaging, Three-Dimensional/methods , Liver/diagnostic imaging , Preoperative Period , Tomography, X-Ray Computed , Angiography , Automation , Blood Vessels/diagnostic imaging , Humans , Intraoperative Period , Liver/blood supply , Liver/surgery , Ultrasonography
6.
Phys Med Biol ; 56(1): 117-37, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21119227

ABSTRACT

In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.


Subject(s)
Imaging, Three-Dimensional/methods , Liver/diagnostic imaging , Tomography, X-Ray Computed/methods , Ultrasonics/methods , Algorithms , Humans , Liver/pathology , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...