Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
Front Plant Sci ; 15: 1416253, 2024.
Article En | MEDLINE | ID: mdl-38845849

This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.

2.
Adv Mater ; : e2313328, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561634

Whether intentionally generating acoustic waves or attempting to mitigate unwanted noise, sound control is an area of challenge and opportunity. This study investigates traditional fabrics as emitters and suppressors of sound. When attached to a single strand of a piezoelectric fiber actuator, a silk fabric emits up to 70 dB of sound. Despite the complex fabric structure, vibrometer measurements reveal behavior reminiscent of a classical thin plate. Fabric pore size relative to the viscous boundary layer thickness is found-through comparative fabric analysis-to influence acoustic-emission efficiency. Sound suppression is demonstrated using two distinct mechanisms. In the first, direct acoustic interference is shown to reduce sound by up to 37 dB. The second relies on pacifying the fabric vibrations by the piezoelectric fiber, reducing the amplitude of vibration waves by 95% and attenuating the transmitted sound by up to 75%. Interestingly, this vibration-mediated suppression in principle reduces sound in an unlimited volume. It also allows the acoustic reflectivity of the fabric to be dynamically controlled, increasing by up to 68%. The sound emission and suppression efficiency of a 130 µm silk fabric presents opportunities for sound control in a variety of applications ranging from apparel to transportation to architecture.

3.
mBio ; 15(1): e0240123, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38112432

IMPORTANCE: Fusarium graminearum is a destructive fungal pathogen that causes Fusarium head blight (FHB) on a wide range of cereal crops. To control fungal diseases, it is essential to comprehend the pathogenic mechanisms that enable fungi to overcome host defenses during infection. Pathogens require an oxidative stress response to overcome host-derived oxidative stress. Here, we identify the underlying mechanisms of the Fgbzip007-mediated oxidative stress response in F. graminearum. ChIP-seq and subsequent genetic analyses revealed that the role of glutathione in pathogenesis is not dependent on antioxidant functions in F. graminearum. Altogether, this study establishes a comprehensive framework for the Fgbzip007 regulon on pathogenicity and oxidative stress responses, offering a new perspective on the role of glutathione in pathogenicity.


Fusarium , Virulence/genetics , Oxidative Stress , Sulfur , Plant Diseases/microbiology
4.
Nat Commun ; 14(1): 8330, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38097615

Integrating different modification strategies into a single step to achieve the desired properties of metal-organic frameworks (MOFs) has been very synthetically challenging, especially in developing advanced MOF/polymer mixed matrix membranes (MMMs). Herein, we report a polymer-MOF (polyMOF) system constructed from a carboxylated polymer with intrinsic microporosity (cPIM-1) ligand. This intrinsically microporous ligand could coordinate with metals, leading to ~100 nm-sized polyMOF nanoparticles. Compared to control MOFs, these polyMOFs exhibit enhanced ultramicroporosity for efficient molecular sieving, and they have better dispersion properties in casting solutions to prepare MMMs. Ultimately, integrating coordination chemistries through the cPIM-1 and polymer-based functionality into porous materials results in polyMOF/PIM-1 MMMs that display excellent CO2 separation performance (surpassing the CO2/N2 and CO2/CH4 upper bounds). In addition to exploring the physicochemical and transport properties of this polyMOF system, scalability has been demonstrated by converting the developed MMM material into large-area (400 cm2) thin-film nanocomposite (TFN) membranes.

5.
Food Sci Biotechnol ; 32(13): 1893-1900, 2023 Nov.
Article En | MEDLINE | ID: mdl-37781064

Storage stability of pepper (Capsicum annuum L.) powder packaged using 2 different film pouches of Ny/PE and PET/Al/PE inserted with moisture absorbent and oxygen scavenger was investigated during storage at 25 °C for 5 months and at 40 °C for 14 days. The moisture content of red pepper powder did not change significantly in PET/Al/PE packaging but decreased significantly in Ny/PE packaging after the abuse of storage temperature. The color of red pepper powder was quite stable in all packaging treatments. Other quality characteristics of all packaged pepper powder, including microbial cell count, capsaicinoids, ascorbic acid, and free sugar content, were also maintained near their initial levels with no appreciable changes during storage. Red pepper powder with a moisture content of 13-14% and packaged with a film with high gas-barrier properties can be stored for more than 5 months even if there is an unexpected temperature abuse during storage.

6.
Microbiol Spectr ; : e0148523, 2023 Sep 06.
Article En | MEDLINE | ID: mdl-37671872

In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.

7.
Amino Acids ; 55(8): 1013-1022, 2023 Aug.
Article En | MEDLINE | ID: mdl-37310533

Antimicrobial peptides (AMPs) are a crucial component of the natural defense system that the host employs to protect itself against invading pathogens. PMAP-23, a cathelicidin-derived AMP, has potent and broad-spectrum antimicrobial activity. Our earlier studies led us to hypothesize that PMAP-23 adopts a dynamic helix-hinge-helix structure, initially attaching to membrane surfaces through the N-helix and subsequently inserting the C-helix into the lipid bilayer. Here, we rationally designed PMAP-NC with increased amphipathicity and hydrophobicity in the N- and C-helix, respectively, based on the hypothesis of the interaction of PMAP-23 with membranes. Compared to the parental PMAP-23, PMAP-NC showed two-eightfold improved bactericidal activity against both Gram-positive and Gram-negative strains with fast killing kinetics. Fluorescence studies demonstrated that PMAP-NC largely disrupted membrane integrity, indicating that efficiency and kinetics of bacterial killing are associated with the membrane permeabilization. Interestingly, PMAP-NC exhibited much better anticancer activity against tumor cells than PMAP-23 but displayed low hemolytic activity against human erythrocytes. Collectively, our findings suggest that PMAP-NC, with the structural arrangement of an amphipathic helix-hinge-hydrophobic helix that plays a critical role in rapid and efficient membrane permeabilization, can be an attractive candidate for novel antimicrobial and/or anticancer drugs.


Anti-Infective Agents , Antimicrobial Cationic Peptides , Humans , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Cathelicidins , Microbial Sensitivity Tests
8.
Front Immunol ; 13: 973673, 2022.
Article En | MEDLINE | ID: mdl-36479132

Asthmatics are more susceptible to viral infections than healthy individuals and are known to have impaired innate anti-viral defences. Influenza A virus causes significant morbidity and mortality in this population. Immuno-modulatory regulators (IMRs) such as PD-1 are activated on T cells following viral infection as part of normal T cell activation responses, and then subside, but remain elevated in cases of chronic exposure to virus, indicative of T cell exhaustion rather than activation. There is evidence that checkpoint inhibition can enhance anti-viral responses during acute exposure to virus through enhancement of CD8+T cell function. Although elevated PD-1 expression has been described in pulmonary tissues in other chronic lung diseases, the role of IMRs in asthma has been relatively unexplored as the basis for immune dysfunction. We first assessed IMR expression in the peripheral circulation and then quantified changes in IMR expression in lung tissue in response to ex-vivo influenza infection. We found that the PD-1 family members are not significantly altered in the peripheral circulation in individuals with severe asthma but are elevated in pulmonary tissues following ex-vivo influenza infection. We then applied PD-1 Mab inhibitor treatment to bronchial biopsy tissues infected with influenza virus and found that PD-1 inhibition was ineffective in asthmatics, but actually increased infection rates in healthy controls. This study, therefore, suggests that PD-1 therapy would not produce harmful side-effects when applied in people with severe asthma, but could have important, as yet undescribed, negative effects on anti-viral responses in healthy individuals that warrant further investigation.


Asthma , Influenza, Human , Programmed Cell Death 1 Receptor , Humans , Influenza, Human/complications , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Asthma/metabolism , Asthma/virology , Disease Progression , CD8-Positive T-Lymphocytes
9.
Front Plant Sci ; 13: 1030720, 2022.
Article En | MEDLINE | ID: mdl-36466249

Plant bacterial disease is a complex outcome achieved through a combination of virulence factors that are activated during infection. However, the common virulence factors across diverse plant pathogens are largely uncharacterized. Here, we established a pan-genome shared across the following plant pathogens: Burkholderia glumae, Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. By overlaying in planta transcriptomes onto the pan-genome, we investigated the expression profiles of common genes during infection. We found over 70% of identical patterns for genes commonly expressed by the pathogens in different plant hosts or infection sites. Co-expression patterns revealed the activation of a signal transduction cascade to recognize and respond to external changes within hosts. Using mutagenesis, we uncovered a relationship between bacterial virulence and functions highly conserved and shared in the studied genomes of the bacterial phytopathogens, including flagellar biosynthesis protein, C4-dicarboxylate ABC transporter, 2-methylisocitrate lyase, and protocatechuate 3,4-dioxygenase (PCD). In particular, the disruption of PCD gene led to attenuated virulence in all pathogens and significantly affected phytotoxin production in B. glumae. This PCD gene was ubiquitously distributed in most plant pathogens with high homology. In conclusion, our results provide cross-species in planta models for identifying common virulence factors, which can be useful for the protection of crops against diverse pathogens.

10.
Commun Biol ; 5(1): 1129, 2022 10 26.
Article En | MEDLINE | ID: mdl-36289323

Intron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi. Here, we characterized the molecular functions of Dbr1 in Fusarium graminearum, a major fungal plant pathogen. Deletion of FgDBR1 resulted in pleiotropic defects in hyphal growth, conidiation, sexual reproduction, and virulence. Through transcriptome analysis, we revealed that the deletion mutant exhibited global accumulation of intron lariats and upregulation of ribosome-related genes. Excessive accumulation of lariat RNA led to reduced overall protein synthesis, causing various phenotypic defects in the absence of FgDBR1. The results of this study demonstrate that a compromised intron turnover process affects development and pathogenesis in this fungus and that Dbr1 function is critical to plant pathogenic fungi.


Exonucleases , RNA , Introns , Virulence/genetics
12.
Waste Manag ; 150: 90-97, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35810729

With the regular increase in global solid waste, landfilling is intensively used for waste disposal. However, landfill gas (LFG) produced as a byproduct during waste decomposition in the landfills is a serious problem since it leads to damage to the eco-systems. Accordingly, it has been highlighted to convert LFG into other value-added chemicals. In this study, LFG utilization was studied in terms of conversion into methanol (MeOH) by considering different scenarios of LFG utilization. Techno-economic analysis and environmental assessment were performed to identify the economic feasibility and environmental impact of each case. From the economic analysis, bio-MeOH production costs of 879.16, 724.52, and 1,130.74 $ ton-1 for case 1, 2, and 3 was estimated with the economic infeasibility, while substantial cost reduction through projected cost analysis can lead to economic competitiveness (449.52 $ ton-1 for case 2 and 595.76 $ ton-1 for case 3). In sequence, the quantitative environmental impacts in terms of climate change impact were 2.360, 0.835, and 0.605 kg CO2-eq kg MeOH-1 for cases 1, 2, and 3, respectively. Based on the results of two analyses, a multi-criteria decision analysis was conducted to investigate the acceptable case of bio-MeOH production in the economic and environmental aspects. It can be concluded that the most feasible case depends on decision-makers if only economic and environmental criteria were considered. Therefore, dry reforming and membrane separation of LFG have considerable potential for bio-MeOH production in terms of LFG utilization for high weighting of economic and environmental aspects, respectively.


Methanol , Refuse Disposal , Gases/analysis , Methane , Refuse Disposal/methods , Solid Waste , Waste Disposal Facilities
13.
Mol Plant Microbe Interact ; 34(11): 1324-1327, 2021 Nov.
Article En | MEDLINE | ID: mdl-34353115

Bacterial panicle blight caused by Burkholderia glumae is a major disease in rice production worldwide. Currently, only a few whole-genome sequences of B. glumae strains isolated in the United States are available. Here, we report the complete genome sequence of four B. glumae strains, including three virulent strains (336gr-1, 411gr-6, and 957856-41-c) and the nonpathogenic strain B. glumae 257sh-1, which were isolated from rice fields in Louisiana (336gr-1, 957856-41-c, and 257sh-1) and Arkansas (411gr-6). The whole-genome sequence data of B. glumae strains will contribute to investigations of the molecular mechanism underlying bacterial pathogenicity and virulence to rice plants.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Burkholderia , Oryza , Burkholderia/genetics , Sequence Analysis, DNA , United States , Virulence/genetics
14.
Microorganisms ; 9(6)2021 May 22.
Article En | MEDLINE | ID: mdl-34067383

Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.

15.
J Med Chem ; 64(8): 5137-5156, 2021 04 22.
Article En | MEDLINE | ID: mdl-33797901

The approvals of idelalisib and duvelisib have validated PI3Kδ inhibitors for the treatment for hematological malignancies driven by the PI3K/AKT pathway. Our program led to the identification of structurally distinct heterocycloalkyl purine inhibitors with excellent isoform and kinome selectivity; however, they had high projected human doses. Improved ligand contacts gave potency enhancements, while replacement of metabolic liabilities led to extended half-lives in preclinical species, affording PI3Kδ inhibitors with low once-daily predicted human doses. Treatment of C57BL/6-Foxp3-GDL reporter mice with 30 and 100 mg/kg/day of 3c (MSD-496486311) led to a 70% reduction in Foxp3-expressing regulatory T cells as observed through bioluminescence imaging with luciferin, consistent with the role of PI3K/AKT signaling in Treg cell proliferation. As a model for allergic rhinitis and asthma, treatment of ovalbumin-challenged Brown Norway rats with 0.3 to 30 mg/kg/day of 3c gave a dose-dependent reduction in pulmonary bronchoalveolar lavage inflammation eosinophil cell count.


Class I Phosphatidylinositol 3-Kinases/chemistry , Immunologic Factors/chemistry , Pyrrolidines/chemistry , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Binding Sites , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Dogs , Half-Life , Humans , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Lectins, C-Type/metabolism , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Rats , Rats, Wistar , Rhinitis, Allergic/drug therapy , Signal Transduction/drug effects , Structure-Activity Relationship
16.
Microorganisms ; 9(4)2021 Mar 26.
Article En | MEDLINE | ID: mdl-33810444

In this study, two bacterial strains, IRP7 and IRP8, were selected to induce resistance against pine wilt disease (PWD). Foliar application with these strains to nematode-inoculated pine seedlings significantly reduced PWD severity. The effect of nematode inoculation and bacterial treatment on the rhizosphere bacterial community was investigated. The results indicated that the rhizosphere of nematode-inoculated seedlings contained a lower relative abundance of beneficial microbes such as Paraburkholderia, Bradyrhizobium, Rhizobacter, Lysobacter, and Caballeronia. Bacterial treatment resulted in significant changes in the microbes that were represented in relatively low relative abundance. Treatment with IRP7 resulted in an increase in the relative abundance of Nitrospirillum, Bacillus, and Luteibacter, which might be useful for protection against infection. Treatment with IRP8 resulted in an increase in the relative abundance of obligate bacterial predators of the Bdellovibrio genus that were previously shown to control several bacterial phytopathogens and may have a role in the management of nematode-carried bacteria. The selected bacteria were identified as Pseudomonas koreensis IRP7 and Lysobacter enzymogenes IRP8 and are suggested as a potential treatment for induced resistance against PWD. To our knowledge, this is the first report on the effect of foliar treatment with resistance-inducing bacteria on the rhizosphere microbiota.

17.
Plants (Basel) ; 11(1)2021 Dec 23.
Article En | MEDLINE | ID: mdl-35009038

Burkholderia glumae are bacteria pathogenic to rice plants that cause a disease called bacterial panicle blight (BPB) in rice panicles. BPB, induced by B. glumae, causes enormous economic losses to the rice agricultural industry. B. glumae also causes bacterial disease in other crops because it has various virulence factors, such as toxins, proteases, lipases, extracellular polysaccharides, bacterial motility, and bacterial secretion systems. In particular, B. glumae BGR1 harbors type VI secretion system (T6SS) with functionally distinct roles: the prokaryotic targeting system and the eukaryotic targeting system. The functional activity of T6SS requires 13 core components and T6SS accessory proteins, such as adapters containing DUF2169, DUF4123, and DUF1795 domains. There are two genes, bglu_1g23320 and bglu_2g07420, encoding the DUF2169 domain-containing protein in the genome of B. glumae BGR1. bglu_2g07420 belongs to the gene cluster of T6SS group_5 in B. glumae BGR1, whereas bglu_1g23320 does not belong to any T6SS gene cluster in B. glumae BGR1. T6SS group_5 of B. glumae BGR1 is involved in bacterial virulence in rice plants. The DUF2169 domain-containing protein with a single domain can function by itself; however, Δu1g23320 showed no attenuated virulence in rice plants. In contrast, Δu2g07420DUF2169 and Δu2g07420PPR did exhibit attenuated virulence in rice plants. These results suggest that the pentapeptide repeats region of the C-terminal additional domain, as well as the DUF2169 domain, is required for complete functioning of the DUF2169 domain-containing protein encoded by bglu_2g07420. bglu_2g07410, which encodes the pentapeptide repeats protein, composed of only the pentapeptide repeats region, is located downstream of bglu_2g07420. Δu2g07410 also shows attenuated virulence in rice plants. This finding suggests that the pentapeptide repeats protein, encoded by bglu_2g07410, is involved in bacterial virulence. This study is the first report that the DUF2169 domain-containing protein and pentapeptide repeats protein are involved in bacterial virulence to the rice plants as T6SS accessory proteins, encoded in the gene cluster of the T6SS group_5.

18.
Plant Dis ; 105(1): 134-143, 2021 Jan.
Article En | MEDLINE | ID: mdl-33197363

Burkholderia glumae, B. plantarii, and B. gladioli are responsible for serious diseases in rice crops and co-occurrence among them has been reported. In this study, in vitro assays revealed antagonistic activity among these organisms, with B. gladioli demonstrating strong inhibition of B. glumae and B. plantarii. Strains of B. glumae and B. plantarii that express green fluorescent protein were constructed and used for cocultivation assays with B. gladioli, which confirmed the strong inhibitory activity of B. gladioli. Cell-free supernatants from each species were tested against cultures of counterpart species to evaluate the potential to inhibit bacterial growth. To investigate the inhibitory activity of B. gladioli on B. glumae and B. plantarii in rice, rice plant assays were performed and quantitative PCR (qPCR) assays were developed for in planta bacterial quantification. The results indicated that coinoculation with B. gladioli leads to significantly reduced disease severity and colonization of rice tissues compared with single inoculation with B. glumae or B. plantarii. This study demonstrates the interactions among three rice-pathogenic Burkholderia species and strong antagonistic activity of B. gladioli in vitro and in planta. The qPCR assays developed here could be applied for accurate quantification of these organisms from in planta samples in future studies.


Burkholderia , Oryza
19.
Genes (Basel) ; 11(9)2020 08 26.
Article En | MEDLINE | ID: mdl-32858932

The pinewood nematode (PWN) Bursaphelenchus xylophilus causes pine wilt disease, which results in substantial economic and environmental losses across pine forests worldwide. Although systemic acquired resistance (SAR) is effective in controlling PWN, the detailed mechanisms underlying the resistance to PWN are unclear. Here, we treated pine samples with two SAR elicitors, acibenzolar-S-methyl (ASM) and methyl salicylic acid (MeSA) and constructed an in vivo transcriptome of PWN-infected pines under SAR conditions. A total of 252 million clean reads were obtained and mapped onto the reference genome. Compared with untreated pines, 1091 and 1139 genes were differentially upregulated following the ASM and MeSA treatments, respectively. Among these, 650 genes showed co-expression patterns in response to both SAR elicitors. Analysis of these patterns indicated a functional linkage among photorespiration, peroxisome, and glycine metabolism, which may play a protective role against PWN infection-induced oxidative stress. Further, the biosynthesis of flavonoids, known to directly control parasitic nematodes, was commonly upregulated under SAR conditions. The ASM- and MeSA-specific expression patterns revealed functional branches for myricetin and quercetin production in flavonol biosynthesis. This study will enhance the understanding of the dynamic interactions between pine hosts and PWN under SAR conditions.


Disease Resistance/genetics , Gene Expression Regulation, Plant/drug effects , Nematoda/drug effects , Pinus/genetics , Plant Diseases/genetics , Salicylates/pharmacology , Transcriptome/drug effects , Animals , Antirheumatic Agents/pharmacology , Disease Resistance/drug effects , Nematoda/physiology , Pinus/drug effects , Pinus/immunology , Pinus/parasitology , Plant Diseases/immunology , Plant Diseases/parasitology
20.
Am J Respir Cell Mol Biol ; 63(5): 591-600, 2020 11.
Article En | MEDLINE | ID: mdl-32706623

Viral-induced exacerbation of asthma remains a major cause of hospitalization and mortality. New human-relevant models of the airways are urgently needed to understand how respiratory infections may trigger asthma attacks and to advance treatment development. Here, we describe a new human-relevant model of rhinovirus-induced asthma exacerbation that recapitulates viral infection of asthmatic airway epithelium and neutrophil transepithelial migration, and enables evaluation of immunomodulatory therapy. Specifically, a microengineered model of fully differentiated human mucociliary airway epithelium was stimulated with IL-13 to induce a T-helper cell type 2 asthmatic phenotype and infected with live human rhinovirus 16 (HRV16) to reproduce key features of viral-induced asthma exacerbation. We observed that the infection with HRV16 replicated key hallmarks of the cytopathology and inflammatory responses observed in human airways. Generation of a T-helper cell type 2 microenvironment through exogenous IL-13 stimulation induced features of asthmatic airways, including goblet cell hyperplasia, reduction of cilia beating frequency, and endothelial activation, but did not alter rhinovirus infectivity or replication. High-resolution kinetic analysis of secreted inflammatory markers revealed that IL-13 treatment altered IL-6, IFN-λ1, and CXCL10 secretion in response to HRV16. Neutrophil transepithelial migration was greatest when viral infection was combined with IL-13 treatment, whereas treatment with MK-7123, a CXCR2 antagonist, reduced neutrophil diapedesis in all conditions. In conclusion, our microengineered Airway Lung-Chip provides a novel human-relevant platform for exploring the complex mechanisms underlying viral-induced asthma exacerbation. Our data suggest that IL-13 may impair the hosts' ability to mount an appropriate and coordinated immune response to rhinovirus infection. We also show that the Airway Lung-Chip can be used to assess the efficacy of modulators of the immune response.


Asthma/virology , Bioengineering , Disease Progression , Lab-On-A-Chip Devices , Lung/pathology , Lung/virology , Microtechnology , Models, Biological , Cell Movement , Cells, Cultured , Cytopathogenic Effect, Viral , Humans , Neutrophil Infiltration , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Rhinovirus
...