Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 222(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37145332

ABSTRACT

While post-transcriptional control is thought to be required at the periphery of neurons and glia, its extent is unclear. Here, we investigate systematically the spatial distribution and expression of mRNA at single molecule sensitivity and their corresponding proteins of 200 YFP trap lines across the intact Drosophila nervous system. 97.5% of the genes studied showed discordance between the distribution of mRNA and the proteins they encode in at least one region of the nervous system. These data suggest that post-transcriptional regulation is very common, helping to explain the complexity of the nervous system. We also discovered that 68.5% of these genes have transcripts present at the periphery of neurons, with 9.5% at the glial periphery. Peripheral transcripts include many potential new regulators of neurons, glia, and their interactions. Our approach is applicable to most genes and tissues and includes powerful novel data annotation and visualization tools for post-transcriptional regulation.


Subject(s)
Drosophila Proteins , RNA, Messenger , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA Processing, Post-Transcriptional
2.
Elife ; 112022 01 20.
Article in English | MEDLINE | ID: mdl-35049501

ABSTRACT

Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.


Subject(s)
COVID-19/virology , RNA, Viral/metabolism , SARS-CoV-2/pathogenicity , Animals , Chlorocebus aethiops/genetics , RNA/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Vero Cells , Viral Proteins/metabolism , Virus Replication/physiology
3.
Cell Rep ; 37(13): 110148, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34965424

ABSTRACT

Microglia are implicated in neurodegeneration, potentially by phagocytosing neurons, but it is unclear how to block the detrimental effects of microglia while preserving their beneficial roles. The microglial P2Y6 receptor (P2Y6R) - activated by extracellular UDP released by stressed neurons - is required for microglial phagocytosis of neurons. We show here that injection of amyloid beta (Aß) into mouse brain induces microglial phagocytosis of neurons, followed by neuronal and memory loss, and this is all prevented by knockout of P2Y6R. In a chronic tau model of neurodegeneration (P301S TAU mice), P2Y6R knockout prevented TAU-induced neuronal and memory loss. In vitro, P2Y6R knockout blocked microglial phagocytosis of live but not dead targets and reduced tau-, Aß-, and UDP-induced neuronal loss in glial-neuronal cultures. Thus, the P2Y6 receptor appears to mediate Aß- and tau-induced neuronal and memory loss via microglial phagocytosis of neurons, suggesting that blocking this receptor may be beneficial in the treatment of neurodegenerative diseases.


Subject(s)
Amyloid beta-Peptides/toxicity , Memory Disorders/pathology , Microglia/metabolism , Neurodegenerative Diseases/pathology , Phagocytosis , Receptors, Purinergic P2/physiology , tau Proteins/metabolism , Animals , Female , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , tau Proteins/genetics
4.
Science ; 374(6567): eabj3624, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34581622

ABSTRACT

Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2'-5'-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , COVID-19/genetics , COVID-19/physiopathology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , SARS-CoV-2/physiology , 5' Untranslated Regions , A549 Cells , Animals , COVID-19/enzymology , COVID-19/immunology , Chiroptera/genetics , Chiroptera/virology , Coronaviridae/enzymology , Coronaviridae/genetics , Coronaviridae/physiology , Endoribonucleases/metabolism , Humans , Interferons/immunology , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Polymorphism, Single Nucleotide , Protein Prenylation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Retroelements , SARS-CoV-2/genetics , Severity of Illness Index , Virus Replication
5.
Mol Cell ; 81(13): 2851-2867.e7, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34118193

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.


Subject(s)
COVID-19/metabolism , Proteome/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Viral Proteins/metabolism , Virus Replication/physiology , A549 Cells , COVID-19/genetics , Humans , Proteome/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Viral Proteins/genetics
6.
Cell Rep ; 35(3): 109020, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33852916

ABSTRACT

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Subject(s)
COVID-19/metabolism , Epithelial Cells/metabolism , Glycine/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/pharmacology , Lung/metabolism , SARS-CoV-2/physiology , Virus Internalization/drug effects , Virus Replication/drug effects , A549 Cells , Animals , COVID-19/pathology , Caco-2 Cells , Cell Hypoxia/drug effects , Chlorocebus aethiops , Epithelial Cells/virology , Glycine/pharmacology , Humans , Lung/virology , Mice , Vero Cells , COVID-19 Drug Treatment
7.
Biol Open ; 9(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32205310

ABSTRACT

During Drosophila and vertebrate brain development, the conserved transcription factor Prospero/Prox1 is an important regulator of the transition between proliferation and differentiation. Prospero level is low in neural stem cells and their immediate progeny, but is upregulated in larval neurons and it is unknown how this process is controlled. Here, we use single molecule fluorescent in situ hybridisation to show that larval neurons selectively transcribe a long prospero mRNA isoform containing a 15 kb 3' untranslated region, which is bound in the brain by the conserved RNA-binding protein Syncrip/hnRNPQ. Syncrip binding increases the stability of the long prospero mRNA isoform, which allows an upregulation of Prospero protein production. Adult flies selectively lacking the long prospero isoform show abnormal behaviour that could result from impaired locomotor or neurological activity. Our findings highlight a regulatory strategy involving alternative polyadenylation followed by differential post-transcriptional regulation.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Drosophila Proteins/genetics , Drosophila/physiology , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/genetics , Neurons/metabolism , Nuclear Proteins/genetics , Polyadenylation , RNA, Messenger/genetics , Transcription Factors/genetics , 3' Untranslated Regions , Animals , Drosophila Proteins/metabolism , Immunohistochemistry , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Organ Specificity/genetics , RNA Stability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...