Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Case Rep Oncol ; 17(1): 705-711, 2024.
Article in English | MEDLINE | ID: mdl-39015650

ABSTRACT

Introduction: Inflammatory pseudotumor encompasses a broad range of non-neoplastic and neoplastic entities, including inflammatory myofibroblastic tumors (IMTs). Because it is a rare mesenchymal tumor of unknown etiology and pathogenesis, and its clinical symptoms and radiologic features are not distinctive, intracranial IMT could be misdiagnosed as other extra-axial tumors. Here, we present a case of intracranial IMT suspected to be a brain abscess. Case Presentation: In this case, a 73-year-old woman presented headaches, nausea, and vertigo. Brain computed tomography (CT) and magnetic resonance imaging showed 4 × 3 cm sized oval rim-enhanced lesion on the left cerebellopontine angle. Considering the patient's history of otitis media and CT findings, we hypothesized that this lesion was a chronic brain abscess. The initial burr hole drain surgery was unsuccessful because there was no abscess, leading to a second radical excision surgery. Histopathological and immunohistochemical analyses eventually revealed a final diagnosis of intracranial IMT. Conclusion: Intracranial IMT is a rare disease with unknown pathogenesis. Diagnosis primarily depends on histopathological and immunohistochemistry analyses. As observed in our case, this disease may be mistaken for meningiomas, solitary fibrous tumors, or chronic abscesses due to its rare occurrence.

2.
Oncogene ; 43(31): 2431-2446, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38937602

ABSTRACT

Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells. Further, ESRRA expression and activity were relatively high in thyroid tumors with oncocytic characteristics, wherein ESRRA and mortalin exhibited relatively high functional overlap. Mechanistically, ESRRA directly regulated HSPA9 transcription through a novel ESRRA-responsive element located upstream of the HSPA9 promoter. Physiologically, ESRRA depletion suppressed thyroid tumor cell survival via caspase-dependent apoptosis, which ectopic mortalin expression substantially abrogated. ESRRA depletion also effectively suppressed tumor growth and mortalin expression in the xenografts of oncocytic or ESRRA-overexpressing human thyroid tumor cells in mice. Notably, our Bioinformatics analyses of patient data revealed two ESRRA target gene clusters that contrast oncocytic-like and anaplastic features of follicular thyroid tumors. These findings suggest that ESRRA is a tumor-specific regulator of mortalin expression, the ESRRA-mortalin axis has higher significance in tumors with oncocytic characteristics, and ESRRA target gene networks can refine molecular classification of thyroid cancer.


Subject(s)
Cell Survival , ERRalpha Estrogen-Related Receptor , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HSP70 Heat-Shock Proteins , Receptors, Estrogen , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Animals , Mice , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Cell Line, Tumor , Cell Survival/genetics , Apoptosis/genetics , Promoter Regions, Genetic/genetics , Mitochondrial Proteins
3.
BMB Rep ; 57(2): 98-103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38303560

ABSTRACT

The mammalian sirtuin family (SIRT1-SIRT7) has shown diverse biological roles in the regulation and maintenance of genome stability under genotoxic stress. SIRT7, one of the least studied sirtuin, has been demonstrated to be a key factor for DNA damage response (DDR). However, conflicting results have proposed that Sirt7 is an oncogenic factor to promote transformation in cancer cells. To address this inconsistency, we investigated properties of SIRT7 in hepatocellular carcinoma (HCC) regulation under DNA damage and found that loss of hepatic Sirt7 accelerated HCC progression. Specifically, the number, size, and volume of hepatic tumor colonies in diethylnitrosamine (DEN) injected Sirt7-deficient liver were markedly enhanced. Further, levels of HCC progression markers and pro-inflammatory cytokines were significantly elevated in the absence of hepatic Sirt7, unlike those in the control. In chromatin, SIRT7 was stabilized and colocalized to damage site by inhibiting the induction of γH2AX under DNA damage. Together, our findings suggest that SIRT7 is a crucial factor for DNA damage repair and that hepatic loss-of-Sirt7 can promote genomic instability and accelerate HCC development, unlike early studies describing that Sirt7 is an oncogenic factor [BMB Reports 2024; 57(2): 98-103].


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sirtuins , Animals , Humans , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Diethylnitrosamine/toxicity , DNA Repair , DNA Damage , Sirtuins/genetics , Sirtuins/metabolism , Mammals/metabolism
4.
Drug Resist Updat ; 73: 101054, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277756

ABSTRACT

AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sirtuins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Inflammasomes/metabolism , Inflammasomes/pharmacology , Phosphorylation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , MAP Kinase Signaling System , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Cell Proliferation , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/pharmacology , Sirtuins/genetics , Sirtuins/metabolism , Sirtuins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL