ABSTRACT
Pediococcus acidilactici strain S1, a lactic acid-fermenting bacterium, was isolated from makgeolli-a Korean traditional fermented alcoholic beverage. Here we report the 1,980,172 bp (G + C content, 42%) genome sequence of Pediococcus acidilactici strain S1 with 1,525 protein-coding sequences (CDS), of which 47% could be assigned to recognized functional genes. The genome sequence of the strain S1 might provide insights into the genetic basis of the lactic acid bacterium with alcohol-tolerant.(AU)
Subject(s)
Pediococcus acidilactici , Genome, Bacterial , Sequence Analysis, DNA , Lactic AcidABSTRACT
Abstract Pediococcus acidilactici strain S1, a lactic acid-fermenting bacterium, was isolated from makgeolli-a Korean traditional fermented alcoholic beverage. Here we report the 1,980,172 bp (G + C content, 42%) genome sequence of Pediococcus acidilactici strain S1 with 1,525 protein-coding sequences (CDS), of which 47% could be assigned to recognized functional genes. The genome sequence of the strain S1 might provide insights into the genetic basis of the lactic acid bacterium with alcohol-tolerant.
Subject(s)
Genome, Bacterial , Lactic Acid/metabolism , Alcoholic Beverages/microbiology , Pediococcus acidilactici/isolation & purification , Pediococcus acidilactici/genetics , Base Sequence , Republic of Korea , Fermentation , Pediococcus acidilactici/metabolism , Whole Genome SequencingABSTRACT
Pediococcus acidilactici strain S1, a lactic acid-fermenting bacterium, was isolated from makgeolli-a Korean traditional fermented alcoholic beverage. Here we report the 1,980,172bp (G+C content, 42%) genome sequence of Pediococcus acidilactici strain S1 with 1,525 protein-coding sequences (CDS), of which 47% could be assigned to recognized functional genes. The genome sequence of the strain S1 might provide insights into the genetic basis of the lactic acid bacterium with alcohol-tolerant.
Subject(s)
Alcoholic Beverages/microbiology , Genome, Bacterial , Lactic Acid/metabolism , Pediococcus acidilactici/genetics , Pediococcus acidilactici/isolation & purification , Base Sequence , Fermentation , Pediococcus acidilactici/metabolism , Republic of Korea , Whole Genome SequencingABSTRACT
Pediococcus acidilactici strain K3 is an alcohol-tolerant lactic acid bacterium isolated from nuruk, which is a traditional Korean fermentation starter for makgeolli brewing. Draft genome of this strain was approximately 1,991,399 bp (G+C content, 42.1%) with 1525 protein-coding sequences (CDS), of which 44% were assigned to recognized functional genes. This draft genome sequence data of the strain K3 will provide insights into the genetic basis of its alcohol-tolerance.(AU)
Subject(s)
Pediococcus acidilactici/genetics , Sequence Analysis, Protein , Fermentation , Alcoholic Beverages/analysisABSTRACT
Abstract Pediococcus acidilactici strain K3 is an alcohol-tolerant lactic acid bacterium isolated from nuruk, which is a traditional Korean fermentation starter for makgeolli brewing. Draft genome of this strain was approximately 1,991,399 bp (G+C content, 42.1%) with 1525 protein-coding sequences (CDS), of which 44% were assigned to recognized functional genes. This draft genome sequence data of the strain K3 will provide insights into the genetic basis of its alcohol-tolerance.
Subject(s)
Adaptation, Biological/drug effects , Adaptation, Biological/genetics , Genome, Bacterial , Ethanol/pharmacology , Pediococcus acidilactici/drug effects , Pediococcus acidilactici/genetics , Lactic Acid/biosynthesis , Computational Biology/methods , Genomics/methods , Ethanol/metabolism , Fermentation , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Pediococcus acidilactici/isolation & purification , Pediococcus acidilactici/metabolismABSTRACT
Pediococcus acidilactici strain K3 is an alcohol-tolerant lactic acid bacterium isolated from nuruk, which is a traditional Korean fermentation starter for makgeolli brewing. Draft genome of this strain was approximately 1,991,399bp (G+C content, 42.1%) with 1525 protein-coding sequences (CDS), of which 44% were assigned to recognized functional genes. This draft genome sequence data of the strain K3 will provide insights into the genetic basis of its alcohol-tolerance.