Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792173

ABSTRACT

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Subject(s)
Antiviral Agents , Enzyme Inhibitors , Methyltransferases , Molecular Dynamics Simulation , SARS-CoV-2 , Viral Nonstructural Proteins , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Methyltransferases/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Drug Evaluation, Preclinical , COVID-19 Drug Treatment , COVID-19/virology , Binding Sites , Exoribonucleases
2.
Eur J Med Chem ; 271: 116414, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38677061

ABSTRACT

Sclerostin is a secreted glycoprotein that expresses predominantly in osteocytes and inhibits bone formation by antagonizing the Wnt/ß-catenin signaling pathway, and the loop3 region of sclerostin has recently discovered as a novel therapeutic target for bone anabolic treatment without increasing cardiovascular risk. Herein, we used a structural based virtual screening to search for small molecular inhibitors selectively targeting sclerostin loop3. A novel natural product hit ZINC4228235 (THFA) was identified as the sclerostin loop3-selective inhibitor with a Kd value of 42.43 nM against sclerostin loop3. The simplification and derivation of THFA using molecular modeling-guided modification allowed the discovery of an effective and loop3-selective small molecular inhibitor, compound (4-(3-acetamidoprop-1-yn-1-yl)benzoyl)glycine (AACA), with improved binding affinity (Kd = 15.4 nM) compared to the hit THFA. Further in-vitro experiment revealed that compound AACA could attenuate the suppressive effect of transfected sclerostin on Wnt signaling and bone formation. These results make AACA as a potential candidate for development of anti-osteoporosis agents without increasing cardiovascular risk.


Subject(s)
Drug Design , Osteoporosis , Osteoporosis/drug therapy , Humans , Structure-Activity Relationship , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Molecular Structure , Animals , Mice , Drug Discovery , Drug Evaluation, Preclinical , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Dose-Response Relationship, Drug , Models, Molecular , Osteogenesis/drug effects
3.
Acta Pharmacol Sin ; 45(8): 1701-1714, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38609562

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Drug Resistance, Neoplasm , Liver Neoplasms , STAT3 Transcription Factor , Sorafenib , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Cell Line, Tumor , Mice, Nude , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Mice , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Cell Movement/drug effects , Male , Signal Transduction/drug effects , Oligonucleotides/pharmacology
4.
J Chem Inf Model ; 64(7): 2554-2564, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38267393

ABSTRACT

In molecular optimization, one popular way is R-group decoration on molecular scaffolds, and many efforts have been made to generate R-groups based on deep generative models. However, these methods mostly use information on known binding ligands, without fully utilizing target structure information. In this study, we proposed a new method, DiffDec, to involve 3D pocket constraints by a modified diffusion technique for optimizing molecules through molecular scaffold decoration. For end-to-end generation of R-groups with different sizes, we designed a novel fake atom mechanism. DiffDec was shown to be able to generate structure-aware R-groups with realistic geometric substructures by the analysis of bond angles and dihedral angles and simultaneously generate multiple R-groups for one scaffold on different growth anchors. The growth anchors could be provided by users or automatically determined by our model. DiffDec achieved R-group recovery rates of 69.67% and 45.34% in the single and multiple R-group decoration tasks, respectively, and these values were significantly higher than competing methods (37.33% and 26.85%). According to the molecular docking study, our decorated molecules obtained a better average binding affinity than baseline methods. The docking pose analysis revealed that DiffDec could decorate scaffolds with R-groups that exhibited improved binding affinities and more favorable interactions with the pocket. These results demonstrated the potential and applicability of DiffDec in real-world scaffold decoration for molecular optimization.


Subject(s)
Quantitative Structure-Activity Relationship , Molecular Docking Simulation
5.
J Chem Inf Model ; 64(3): 666-676, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38241022

ABSTRACT

Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.


Subject(s)
Drug Design , Drug Discovery , Neural Networks, Computer , Learning , Curriculum
6.
J Biomol Struct Dyn ; : 1-17, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133953

ABSTRACT

The Adenosine A2B receptor (A2BAR) is considered a novel potential target for the immunotherapy of cancer, and A2BAR antagonists have an inhibitory effect on tumor growth, proliferation, and metastasis. In our previous studies, we identified a class of benzimidazole-pyrazine scaffolds whose derivatives exhibited the antagonistic effect but lacked subtype selectivity towards A2BAR. In this work, we developed a scaffold-based protocol that incorporates a deep generative model and multilayer virtual screening to design benzimidazole-pyrazine derivatives as potential selective A2BAR antagonists. By utilizing a generative model with reported A2BAR antagonists as the training set, we built up a scaffold-focused library of benzimidazole-pyrazine derivatives and processed a virtual screening protocol to discover potential A2BAR antagonists. Finally, five molecules with different Bemis-Murcko scaffolds were identified and exhibited higher binding free energies than the reference molecule 12o. Further computational analysis revealed that the 3-benzyl derivative ABA-1266 presented high selectivity toward A2BAR and showed preferred draggability, providing future potent development of selective A2BAR antagonists.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL