Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 56(7): 1631-1648.e10, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37392737

ABSTRACT

CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Cell Differentiation , Cell Proliferation , Receptors, Antigen, T-Cell
2.
Hepatology ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37300379

ABSTRACT

Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.

3.
Cancer Res ; 83(4): 626-640, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36525476

ABSTRACT

Cancers evade immune surveillance, which can be reversed through immune-checkpoint therapy in a small subset of cases. Here, we report that the MYC oncogene suppresses innate immune surveillance and drives resistance to immunotherapy. In 33 different human cancers, MYC genomic amplification and overexpression increased immune-checkpoint expression, predicted nonresponsiveness to immune-checkpoint blockade, and was associated with both Th2-like immune profile and reduced CD8 T-cell infiltration. MYC transcriptionally suppressed innate immunity and MHCI-mediated antigen presentation, which in turn impeded T-cell response. Combined, but not individual, blockade of PDL1 and CTLA4 could reverse MYC-driven immune suppression by leading to the recruitment of proinflammatory antigen-presenting macrophages with increased CD40 and MHCII expression. Depletion of macrophages abrogated the antineoplastic effects of PDL1 and CTLA4 blockade in MYC-driven hepatocellular carcinoma (HCC). Hence, MYC is a predictor of immune-checkpoint responsiveness and a key driver of immune evasion through the suppression of proinflammatory macrophages. The immune evasion induced by MYC in HCC can be overcome by combined PDL1 and CTLA4 blockade. SIGNIFICANCE: Macrophage-mediated immune evasion is a therapeutic vulnerability of MYC-driven cancers, which has implications for prioritizing MYC-driven hepatocellular carcinoma for combination immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Immune Evasion , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , CTLA-4 Antigen , Immune Evasion/genetics , Liver Neoplasms/metabolism , Macrophages/metabolism
4.
Blood Adv ; 6(2): 672-678, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34714910

ABSTRACT

Bone marrow (BM) mesenchymal stromal cells (MSCs) are abnormal in multiple myeloma (MM) and play a critical role by promoting growth, survival, and drug resistance of MM cells. We observed higher Toll-like receptor 4 (TLR4) gene expression in MM MSCs than in MSCs from healthy donors. At the clinical level, we highlighted that TLR4 expression in MM MSCs evolves in parallel with the disease stage. Thus, we reasoned that the TLR4 axis is pivotal in MM by increasing the protumor activity of MSCs. Challenging primary MSCs with TLR4 agonists increased the expression of CD54 and interleukin-6 (IL-6), 2 factors directly implicated in MM MSC-MM cell crosstalk. Then, we evaluated the therapeutic efficacy of a TLR4 antagonist combined or not with conventional treatment in vitro with MSC-MM cell coculture and in vivo with the Vk*MYC mouse model. Selective inhibition of TLR4 specifically reduced the MM MSC ability to support the growth of MM cells in an IL-6-dependent manner and delayed the development of MM in the Vk*MYC mouse model by altering the early disease phase in vivo. For the first time, we demonstrate that specific targeting of the pathological BM microenvironment via TLR4 signaling could be an innovative approach to alter MM pathology development.


Subject(s)
Mesenchymal Stem Cells , Multiple Myeloma , Animals , Cells, Cultured , Interleukin-6 , Mesenchymal Stem Cells/metabolism , Mice , Multiple Myeloma/metabolism , Toll-Like Receptor 4/genetics , Tumor Microenvironment
5.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053331

ABSTRACT

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms/immunology , T-Box Domain Proteins/immunology , Animals , Humans , Immune Checkpoint Inhibitors/immunology , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Transcriptome/immunology , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
6.
Int J Mol Sci ; 21(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481768

ABSTRACT

INTRODUCTION: Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal expansion of malignant plasma cells (MM cells) in the bone-marrow (BM) compartment. BM mesenchymal stromal cells (MSC) from newly diagnosed MM patients were shown to be involved in MM pathogenesis and chemoresistance. The patients displayed a distinct transcriptome and were functionally different from healthy donors' (HD) MSC. Our aim was to determine whether MM-MSC also contributed to relapse. METHODS: We obtained and characterized patients' MSC samples at diagnosis, two years after intensive treatment, without relapse and at relapse. RESULTS: Transcriptomic analysis revealed differences in gene expression between HD and MM-MSC, whatever the stage of the disease. An easier differentiation towards adipogenesis at the expense of osteoblatogeneis was observed, even in patients displaying a complete response to treatment. Although their transcriptome was similar, we found that MSC from relapsed patients had an increased immunosuppressive ability, compared to those from patients in remission. CONCLUSION: We demonstrated that imprinting of MSC transcriptome demonstrated at diagnosis of MM, persisted even after the apparent disappearance of MM cells induced by treatment, suggesting the maintenance of a local context favorable to relapse.


Subject(s)
Gene Expression Regulation, Neoplastic , Genomic Imprinting , Mesenchymal Stem Cells/metabolism , Multiple Myeloma/metabolism , Transcriptome , Adipogenesis , Aged , Bone Marrow/metabolism , Bone Marrow Cells/pathology , Cell Differentiation , Coculture Techniques , Drug Resistance, Neoplasm , Female , Gene Expression Profiling , Humans , Immunosuppressive Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Multiple Myeloma/therapy , Neoplasm Recurrence, Local , Principal Component Analysis , Recurrence , T-Lymphocytes/cytology
7.
J Immunother Cancer ; 8(1)2020 06.
Article in English | MEDLINE | ID: mdl-32503947

ABSTRACT

BACKGROUND: Besides the interest of an early detection of ovarian cancer, there is an urgent need for new predictive and prognostic biomarkers of tumor development and cancer treatment. In healthy patients, circulating blood monocytes are typically subdivided into classical (85%), intermediate (5%) and non-classical (10%) populations. Although these circulating monocyte subsets have been suggested as biomarkers in several diseases, few studies have investigate their potential as a predictive signature for tumor immune status,tumor growth and treatment adaptation. METHODS: In this study, we used a homogeneous cohort of 28 chemotherapy-naïve patients with ovarian cancer to evaluate monocyte subsets as biomarkers of the ascites immunological status. We evaluated the correlations between circulating monocyte subsets and immune cells and tumor burden in peritoneal ascites. Moreover, to validate the use of circulating monocyte subsets tofollow tumor progression and treatment response, we characterized blood monocytes from ovarian cancer patients included in a phase 1 clinical trial at baseline and following murlentamab treatment. RESULTS: We demonstrate here a robust expansion of the intermediate blood monocytes (IBMs) in ovarian cancer patients. We establish a significant positive correlation between IBM percentage and tumor-associate macrophages with a CCR2high/CD163high/CD206high/CD86lowprofile. Moreover, IBM expansion is associated with a decreased effector/regulatory T-cell ratio in ascites and with the presence of soluble immunosuppressive mediators. We also establish that IBM proportion positively correlates with the peritoneum tumor burden. Finally, the study of IBMs in patients with ovarian cancer under immunotherapy during the phase clinical trial supports IBMs to follow the evolution of tumor development and the treatment adaptation. CONCLUSIONS: This study, which links IBM level with immunosuppression and tumor burden in peritoneum, identifies IBMs as apotential predictive signature of ascites immune status and as a biomarker ofovarian cancer development and treatment response. TRIAL REGISTRATION NUMBER: EudraCT: 2015-004252-22 NCT02978755.


Subject(s)
Ascites/genetics , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Lipopolysaccharide Receptors/metabolism , Monocytes/metabolism , Receptors, IgG/metabolism , Disease Progression , Female , Humans , Male , Tumor Microenvironment
8.
J Mol Cell Biol ; 12(3): 202-215, 2020 04 24.
Article in English | MEDLINE | ID: mdl-31504643

ABSTRACT

Factors released by surrounding cells such as cancer-associated mesenchymal stromal cells (CA-MSCs) are involved in tumor progression and chemoresistance. In this study, we characterize the mechanisms by which naïve mesenchymal stromal cells (MSCs) can acquire a CA-MSCs phenotype. Ovarian tumor cells trigger the transformation of MSCs to CA-MSCs by expressing pro-tumoral genes implicated in the chemoresistance of cancer cells, resulting in the secretion of high levels of CXC chemokine receptors 1 and 2 (CXCR1/2) ligands such as chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and interleukin 8 (IL-8). CXCR1/2 ligands can also inhibit the immune response against ovarian tumor cells. Indeed, through their released factors, CA-MSCs promote the differentiation of monocytes towards M2 macrophages, which favors tumor progression. When CXCR1/2 receptors are inhibited, these CA-MSC-activated macrophages lose their M2 properties and acquire an anti-tumoral phenotype. Both ex vivo and in vivo, we used a CXCR1/2 inhibitor to sensitize ovarian tumor cells to carboplatin and circumvent the pro-tumoral effects of CA-MSCs. Since high concentrations of CXCR1/2 ligands in patients' blood are associated with chemoresistance, CXCR1/2 inhibition could be a potential therapeutic strategy to revert carboplatin resistance.


Subject(s)
Cell Communication , Drug Resistance, Neoplasm , Immunologic Factors/biosynthesis , Mesenchymal Stem Cells/metabolism , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Biomarkers , Biopsy , Cell Differentiation , Cell Line, Tumor , Computational Biology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Profiling , Humans , Immunomodulation , Macrophages/immunology , Macrophages/metabolism , Mesenchymal Stem Cells/cytology , Mice , Models, Biological , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...