Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 79(3): 612-20, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21784150

ABSTRACT

We have designed an amphiphilic prodrug of the anticancer agent gemcitabine (dFdC), by covalent coupling to squalene. This bioconjugate, which self-assembled into nanoparticles (NPs) in water, was previously found to display an impressive anticancer activity both in vitro and in vivo. The present study aims to investigate the impact of SQdFdC nanoparticles on cellular membranes. MTT assays showed that, in the nanomolar range, squalenoyl gemcitabine (SQdFdC) was slightly less active than dFdC on a panel of human cancer cell lines, in vitro. However, above 10 µmol L(-1) SQdFdC was considerably more cytotoxic than dFdC. Contrarily to its parent drug, SQdFdC also induced cell lysis in a few hours, as evidenced by LDH release assays. Erythrocytes were used as an experimental model insensitive to the antimetabolic activity of dFdC to further investigate the putative membrane-related cytotoxic activity of SQdFdC. The bioconjugate also induced hemolysis in a time- and dose-dependent fashion, unlike squalene or dFdC, which clearly proved that SQdFdC could permeabilize cellular membranes. Structural X-ray diffraction and calorimetry studies were conducted in order to elucidate the mechanism accounting for these observations. They confirmed that SQdFdC could be transferred from NPs to phospholipid bilayers and that the insertion of the prodrug within model membranes resulted in the formation of nonlamellar structures, which are known to promote membrane leakage. As a whole, our results suggested that due to its amphiphilic nature, the cell uptake of SQdFdC resulted in its insertion into cellular membranes, which could lead to the formation of nonlamellar structures and to membrane permeation. Whether this mechanism could be the source of toxicity in vivo, however, remains to be established, since preclinical studies have clearly proven that squalenoyl gemcitabine displayed a good toxicity profile.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Cell Membrane/drug effects , Deoxycytidine/analogs & derivatives , Prodrugs/pharmacology , Squalene/analogs & derivatives , Surface-Active Agents/pharmacology , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacokinetics , Calorimetry, Differential Scanning , Cell Culture Techniques , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Survival/drug effects , Deoxycytidine/administration & dosage , Deoxycytidine/chemistry , Deoxycytidine/pharmacokinetics , Deoxycytidine/pharmacology , Erythrocytes/drug effects , Female , Hemolysis/drug effects , Humans , Mice , Mice, Inbred Strains , Phospholipids/chemistry , Prodrugs/administration & dosage , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Squalene/administration & dosage , Squalene/chemistry , Squalene/pharmacokinetics , Squalene/pharmacology , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacokinetics , X-Ray Diffraction
2.
J Control Release ; 147(2): 163-70, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20691740

ABSTRACT

We have designed an amphiphilic prodrug of gemcitabine (dFdC) by its covalent coupling to a derivative of squalene, a natural lipid. The resulting bioconjugate self-assembled spontaneously in water as nanoparticles that displayed a promising in vivo anticancer activity. The aim of the present study was to provide further insight into the in vitro subcellular localization and on the metabolization pathway of the prodrug. Cells treated with radiolabelled squalenoyl gemcitabine (SQdFdC) were studied by differential detergent permeation, and microautography coupled to fluorescent immunolabeling and confocal microscopy. This revealed that the bioconjugate accumulated within cellular membranes, especially in those of the endoplasmic reticulum. Radio-chromatography analysis proved that SQdFdC delivered dFdC directly in the cell cytoplasm. Mass spectrometry studies confirmed that gemcitabine was then either converted into its biologically active triphosphate metabolite or exported from the cells through membrane transporters. To our knowledge, this is the first description of such an intracellular drug delivery pathway. In vitro cytotoxicity assays revealed that SQdFdC was more active than dFdC on a transporter-deficient human resistant leukemia model, which was explained by the subcellular distribution of the drugs and their metabolites. The squalenoylation drug delivery strategy might, therefore, dramatically improve the efficacy of gemcitabine on transporter-deficient resistant cancer in the clinical context.


Subject(s)
Antimetabolites, Antineoplastic/pharmacokinetics , Cell Membrane/metabolism , Deoxycytidine/analogs & derivatives , Drug Carriers/chemistry , Nanoparticles/chemistry , Prodrugs/pharmacokinetics , Squalene/analogs & derivatives , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacology , Autoradiography , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacokinetics , Deoxycytidine/pharmacology , Drug Compounding , Humans , Particle Size , Prodrugs/administration & dosage , Prodrugs/pharmacology , Squalene/administration & dosage , Squalene/pharmacokinetics , Squalene/pharmacology , Subcellular Fractions/metabolism , Surface-Active Agents/chemistry , Tandem Mass Spectrometry , Tissue Distribution , Gemcitabine
3.
Int J Pharm ; 381(2): 140-5, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19782881

ABSTRACT

Nucleoside analogues are potent anticancer or antiviral agents that however display some limitations (rapid metabolism, induction of resistance). In order to overcome these drawbacks, we recently proposed new prodrugs, in which nucleoside analogues were covalently coupled to squalene (SQ). The resulting amphiphilic compounds spontaneously formed nanoparticles (NPs) and displayed a promising efficacy both in vitro and in vivo. Since long-term stability is essential for further clinical development we needed to develop a laboratory-scale freeze-drying protocol in order to improve the colloidal stability of those NPs. Squalenoylated gemcitabine (SQdFdC) has been successfully freeze-dried with trehalose (10%, w/w) as a cryoprotectant. Concentrations of SQdFdC up to 4mg/mL after freeze-drying and rehydration have been obtained, which is necessary for in vivo studies. Stability measurements by dynamic light scattering showed that trehalose had a stabilizing effect on SQdFdC NPs, and that freeze-dried SQdFdC NPs could be stored up to four months at room temperature before rehydration, without loss of stability. In vitro cytotoxicity studies on three murine cell lines showed that SQdFdC NPs retained their cytotoxic activity after freeze-drying. We showed that this freeze-drying protocol could also be applied to squalenoylated didanosine (SQddI) and zalcitabine (SQddC). Overall, these results allow for the use of freeze-dried NPs in upcoming preclinical trials of the different squalenoylated compounds developed in our laboratory.


Subject(s)
Antimetabolites/chemistry , Cryoprotective Agents/chemistry , Freeze Drying , Nanoparticles/chemistry , Nucleosides/chemistry , Prodrugs/chemistry , Squalene/analogs & derivatives , Algorithms , Animals , Antimetabolites/pharmacology , Cell Line , Cell Survival/drug effects , Cold Temperature , Colloids , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Dideoxynucleosides/chemistry , Dideoxynucleosides/pharmacology , Drug Stability , Freeze Drying/methods , Inhibitory Concentration 50 , Mice , Nanoparticles/administration & dosage , Nephelometry and Turbidimetry , Nucleosides/pharmacology , Prodrugs/pharmacology , Squalene/chemistry , Squalene/pharmacology , Surface Properties , Time Factors , Trehalose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...