Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791410

ABSTRACT

Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of the flavin adenine dinucleotide (FAD) cofactor was estimated to be -0.240 V. Photoreduction using 5-deazaflavin mononucleotide (5-deazaFMN) as a photosensitizer revealed that the difference in the redox potentials between the first and second single-electron transfer steps was 0.024 V. We examined the mechanisms of the reduction of several different groups of non-physiological electron acceptors catalyzed by BsFNR. The reactivity of quinones and aromatic N-oxides toward BsFNR increased when increasing their single-electron reduction midpoint redox potentials. The reactivity of nitroaromatic compounds was lower due to their lower electron self-exchange rate, but it exhibited the same trend. A mixed single- and two-electron reduction reaction was characteristic of quinones, whereas reactions involving nitroaromatics proceeded exclusively via the one-electron reduction reaction. The oxidation of FADH• to FAD is the rate-limiting step during the oxidation of fully reduced FAD. The calculated electron transfer distances in the reaction with nitroaromatics were close to those of other FNRs including the plant-type enzymes, thus demonstrating their similar active site accessibility to low-molecular-weight oxidants despite the fundamental differences in their structures.


Subject(s)
Bacillus subtilis , Ferredoxin-NADP Reductase , Oxidation-Reduction , Ferredoxin-NADP Reductase/metabolism , Ferredoxin-NADP Reductase/chemistry , Bacillus subtilis/enzymology , Xenobiotics/metabolism , Xenobiotics/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Potentiometry , Oxidants/chemistry , Quinones/metabolism , Quinones/chemistry , Electron Transport
2.
Antioxidants (Basel) ; 11(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35624864

ABSTRACT

Rhodopseudomonas palustris ferredoxin:NADP+ oxidoreductase (RpFNR) belongs to a novel group of thioredoxin reductase-type FNRs with partly characterized redox properties. Based on the reactions of RpFNR with the 3-acetylpyridine adenine dinucleotide phosphate redox couple, we estimated the two-electron reduction midpoint potential of the FAD cofactor to be -0.285 V. 5-Deaza-FMN-sensitized photoreduction revealed -0.017 V separation of the redox potentials between the first and second electron transfer events. We examined the mechanism of oxidation of RpFNR by several different groups of nonphysiological electron acceptors. The kcat/Km values of quinones and aromatic N-oxides toward RpFNR increase with their single-electron reduction midpoint potential. The lower reactivity, mirroring their lower electron self-exchange rate, is also seen to have a similar trend for nitroaromatic compounds. A mixed single- and two-electron reduction was characteristic of quinones, with single-electron reduction accounting for 54% of the electron flux, whereas nitroaromatics were reduced exclusively via single-electron reduction. It is highly possible that the FADH· to FAD oxidation reaction is the rate-limiting step during the reoxidation of reduced FAD. The calculated electron transfer distances in the reaction with quinones and nitroaromatics were close to those of Anabaena and Plasmodium falciparum FNRs, thus demonstrating their similar "intrinsic" reactivity.

3.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055166

ABSTRACT

Neuronal nitric oxide synthase (nNOS) catalyzes single-electron reduction of quinones (Q), nitroaromatic compounds (ArNO2) and aromatic N-oxides (ArN → O), and is partly responsible for their oxidative stress-type cytotoxicity. In order to expand a limited knowledge on the enzymatic mechanisms of these processes, we aimed to disclose the specific features of nNOS in the reduction of such xenobiotics. In the absence or presence of calmodulin (CAM), the reactivity of Q and ArN → O increases with their single-electron reduction midpoint potential (E17). ArNO2 form a series with lower reactivity. The calculations according to an "outer-sphere" electron transfer model show that the binding of CAM decreases the electron transfer distance from FMNH2 to quinone by 1-2 Å. The effects of ionic strength point to the interaction of oxidants with a negatively charged protein domain close to FMN, and to an increase in accessibility of the active center induced by high ionic strength. The multiple turnover experiments of nNOS show that, in parallel with reduced FAD-FMN, duroquinone reoxidizes the reduced heme, in particular its Fe2+-NO form. This finding may help to design the heme-targeted bioreductively activated agents and contribute to the understanding of the role of P-450-type heme proteins in the bioreduction of quinones and other prooxidant xenobiotics.


Subject(s)
Calmodulin/metabolism , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Xenobiotics/metabolism , Animals , Nitrogen Oxides/metabolism , Oxidative Stress , Quinones/metabolism , Rats , Recombinant Proteins/metabolism
4.
ACS Infect Dis ; 7(7): 1996-2012, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33855850

ABSTRACT

Plasmodione (PD) is a potent antimalarial redox-active 3-benzyl-menadione acting at low nanomolar range concentrations on different malaria parasite stages. The specific bioactivation of PD was proposed to occur via a cascade of redox reactions starting from one-electron reduction and then benzylic oxidation, leading to the generation of several key metabolites including corresponding benzylic alcohol (PD-bzol, for PD benzhydrol) and 3-benzoylmenadione (PDO, for PD oxide). In this study, we showed that the benzylic oxidation of PD is closely related to the formation of a benzylic semiquinone radical, which can be produced under two conditions: UV photoirradiation or catalysis by Plasmodium falciparum apicoplast ferredoxin-NADP+ reductase (PfFNR) redox cycling in the presence of oxygen and the parent PD. Electrochemical properties of both PD metabolites were investigated in DMSO and in water. The single-electron reduction potential values of PD, PD-bzol, PDO, and a series of 3-benzoylmenadiones were determined according to ascorbate oxidation kinetics. These compounds possess enhanced reactivity toward PfFNR as compared with model quinones. Optimal conditions were set up to obtain the best conversion of the starting PD to the corresponding metabolites. UV irradiation of PD in isopropanol under positive oxygen pressure led to an isolated yield of 31% PDO through the transient semiquinone species formed in a cascade of reactions. In the presence of PfFNR, PDO and PD-bzol could be observed during long lasting redox cycling of PD continuously fueled by NADPH regenerated by an enzymatic system. Finally, we observed and quantified the effect of PD on the production of oxidative stress in the apicoplast of transgenic 3D7[Api-roGFP2-hGrx1]P. falciparum parasites by using the described genetically encoded glutathione redox sensor hGrx1-roGFP2 methodology. The observed fast reactive oxygen species (ROS) pulse released in the apicoplast is proposed to be mediated by PD redox cycling catalyzed by PfFNR.


Subject(s)
Antimalarials , Pharmaceutical Preparations , Catalysis , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/metabolism , NADP/metabolism , Oxidation-Reduction , Plasmodium falciparum/metabolism , Vitamin K 3/analogs & derivatives
5.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228195

ABSTRACT

Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities, which are typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the role of NAD(P)H:quinone oxidoreductase (NQO1) in ArN→O aerobic cytotoxicity. We synthesized 9 representatives of ArN→O with uncharacterized redox properties and examined their single-electron reduction by rat NADPH:cytochrome P-450 reductase (P-450R) and Plasmodium falciparum ferredoxin:NADP+ oxidoreductase (PfFNR), and by rat NQO1. NQO1 catalyzed both redox cycling and the formation of stable reduction products of ArN→O. The reactivity of ArN→O in NQO1-catalyzed reactions did not correlate with the geometric average of their activity towards P-450R- and PfFNR, which was taken for the parameter of their redox cycling efficacy. The cytotoxicity of compounds in murine hepatoma MH22a cells was decreased by antioxidants and the inhibitor of NQO1, dicoumarol. The multiparameter regression analysis of the data of this and a previous study (DOI: 10.3390/ijms20184602) shows that the cytotoxicity of ArN→O (n = 18) in MH22a and human colon carcinoma HCT-116 cells increases with the geometric average of their reactivity towards P-450R and PfFNR, and with their reactivity towards NQO1. These data demonstrate that NQO1 is a potentially important target of action of heteroaromatic N-oxides.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Cyclic N-Oxides/pharmacology , Ferredoxin-NADP Reductase/antagonists & inhibitors , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , NADPH-Ferrihemoprotein Reductase/antagonists & inhibitors , Aerobiosis , Animals , Anti-Bacterial Agents/chemical synthesis , Antioxidants/chemical synthesis , Antiprotozoal Agents/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Cyclic N-Oxides/chemical synthesis , Dicumarol/pharmacology , Enzyme Assays , Enzyme Inhibitors/pharmacology , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , HCT116 Cells , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Kinetics , Mice , NAD(P)H Dehydrogenase (Quinone)/chemistry , NAD(P)H Dehydrogenase (Quinone)/metabolism , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Oxidation-Reduction , Plasmodium falciparum/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Rats , Tirapazamine/chemistry , Tirapazamine/pharmacology
6.
Int J Mol Sci ; 21(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370303

ABSTRACT

Ferredoxin:NADP+ oxidoreductase from Plasmodium falciparum (PfFNR) catalyzes the NADPH-dependent reduction of ferredoxin (PfFd), which provides redox equivalents for the biosynthesis of isoprenoids and fatty acids in the apicoplast. Like other flavin-dependent electrontransferases, PfFNR is a potential source of free radicals of quinones and other redox cycling compounds. We report here a kinetic study of the reduction of quinones, nitroaromatic compounds and aromatic N-oxides by PfFNR. We show that all these groups of compounds are reduced in a single-electron pathway, their reactivity increasing with the increase in their single-electron reduction midpoint potential (E17). The reactivity of nitroaromatics is lower than that of quinones and aromatic N-oxides, which is in line with the differences in their electron self-exchange rate constants. Quinone reduction proceeds via a ping-pong mechanism. During the reoxidation of reduced FAD by quinones, the oxidation of FADH. to FAD is the possible rate-limiting step. The calculated electron transfer distances in the reaction of PfFNR with various electron acceptors are similar to those of Anabaena FNR, thus demonstrating their similar "intrinsic" reactivity. Ferredoxin stimulated quinone- and nitro-reductase reactions of PfFNR, evidently providing an additional reduction pathway via reduced PfFd. Based on the available data, PfFNR and possibly PfFd may play a central role in the reductive activation of quinones, nitroaromatics and aromatic N-oxides in P. falciparum, contributing to their antiplasmodial action.


Subject(s)
Ferredoxin-NADP Reductase/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Xenobiotics/metabolism , Apicoplasts/enzymology , Biocatalysis , Cyclic N-Oxides/chemistry , Cyclic N-Oxides/metabolism , Electron Transport , Ferredoxins/metabolism , Flavin-Adenine Dinucleotide/metabolism , Kinetics , Molecular Structure , NADP/metabolism , Oxidation-Reduction , Quinones/chemistry , Quinones/metabolism , Substrate Specificity , Xenobiotics/chemistry
7.
Molecules ; 24(24)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835450

ABSTRACT

With the aim to clarify the mechanism(s) of action of nitroaromatic compounds against the malaria parasite Plasmodium falciparum, we examined the single-electron reduction by P. falciparum ferredoxin:NADP+ oxidoreductase (PfFNR) of a series of nitrofurans and nitrobenzenes (n = 23), and their ability to inhibit P. falciparum glutathione reductase (PfGR). The reactivity of nitroaromatics in PfFNR-catalyzed reactions increased with their single-electron reduction midpoint potential (E17). Nitroaromatic compounds acted as non- or uncompetitive inhibitors towards PfGR with respect to NADPH and glutathione substrates. Using multiparameter regression analysis, we found that the in vitro activity of these compounds against P. falciparum strain FcB1 increased with their E17 values, octanol/water distribution coefficients at pH 7.0 (log D), and their activity as PfGR inhibitors. Our data demonstrate that both factors, the ease of reductive activation and the inhibition of PfGR, are important in the antiplasmodial in vitro activity of nitroaromatics. To the best of our knowledge, this is the first quantitative demonstration of this kind of relationship. No correlation between antiplasmodial activity and ability to inhibit human erythrocyte GR was detected in tested nitroaromatics. Our data suggest that the efficacy of prooxidant antiparasitic agents may be achieved through their combined action, namely inhibition of antioxidant NADPH:disulfide reductases, and the rapid reduction by single-electron transferring dehydrogenases-electrontransferases.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Glutathione Reductase/antagonists & inhibitors , Oxidation-Reduction/drug effects , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Antioxidants/chemistry , Antioxidants/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/parasitology , Ferredoxin-NADP Reductase/metabolism , Humans , Inhibitory Concentration 50 , Molecular Structure , NADP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...