Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(43): eadj8618, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37878696

ABSTRACT

In Caenorhabditis elegans worms, epigenetic information transmits transgenerationally. Still, it is unknown whether the effects transfer to the next generation inside or outside of the nucleus. Here, we use the tractability of gene-specific double-stranded RNA-induced silencing to demonstrate that RNA interference can be inherited independently of any nuclear factors via mothers that are genetically engineered to transmit only their ooplasm but not the oocytes' nuclei to the next generation. We characterize the mechanisms and, using RNA sequencing, chimeric worms, and sequence polymorphism between different isolates, identify endogenous small RNAs which, similarly to exogenous siRNAs, are inherited in a nucleus-independent manner. From a historical perspective, these results might be regarded as partial vindication of discredited cytoplasmic inheritance theories from the 19th century, such as Darwin's "pangenesis" theory.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Small Interfering/genetics , RNA Interference , Caenorhabditis elegans Proteins/genetics , Gene Silencing , RNA, Double-Stranded/genetics
2.
Elife ; 122023 05 04.
Article in English | MEDLINE | ID: mdl-37140564

ABSTRACT

Various aspects of olfactory memory are represented as modulated responses across different classes of neurons in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Neurons , Smell/physiology
3.
Curr Biol ; 32(8): R367-R370, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35472425

ABSTRACT

The nematode Pristionchus pacificus occasionally encounters other nematode species that compete for similar resources. A new study shows that P. pacificus perform an aggressive patrolling and biting behavior to expel adult Caenorhabditis elegans nematodes from food patches.


Subject(s)
Nematoda , Animals , Caenorhabditis elegans
4.
Dev Cell ; 57(3): 298-309.e9, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35134343

ABSTRACT

It is unknown whether transient transgenerational epigenetic responses to environmental challenges affect the process of evolution, which typically unfolds over many generations. Here, we show that in C. elegans, inherited small RNAs control genetic variation by regulating the crucial decision of whether to self-fertilize or outcross. We found that under stressful temperatures, younger hermaphrodites secrete a male-attracting pheromone. Attractiveness transmits transgenerationally to unstressed progeny via heritable small RNAs and the Argonaute Heritable RNAi Deficient-1 (HRDE-1). We identified an endogenous small interfering RNA pathway, enriched in endo-siRNAs that target sperm genes, that transgenerationally regulates sexual attraction, male prevalence, and outcrossing rates. Multigenerational mating competition experiments and mathematical simulations revealed that over generations, animals that inherit attractiveness mate more and their alleles spread in the population. We propose that the sperm serves as a "stress-sensor" that, via small RNA inheritance, promotes outcrossing in challenging environments when increasing genetic variation is advantageous.


Subject(s)
Biological Evolution , Caenorhabditis elegans/genetics , Inheritance Patterns/genetics , RNA/metabolism , Sex Characteristics , Animals , Caenorhabditis elegans Proteins/metabolism , Environment , Female , Gene Expression Regulation , Male , Spermatozoa/metabolism , Stress, Physiological/genetics
5.
iScience ; 23(12): 101831, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33305186

ABSTRACT

In the recent decade small RNA-based inheritance has been implicated in a variety of transmitted physiological responses to the environment. In Caenorhabditis elegans, heritable small RNAs rely on RNA-dependent RNA polymerases, RNA-processing machinery, chromatin modifiers, and argonauts for their biogenesis and gene-regulatory effects. Importantly, many of these factors reside in evolutionary conserved germ granules that are required for maintaining germ cell identity and gene expression. Recent literature demonstrated that transient disturbance to the stability of the germ granules leads to changes in the pools of heritable small RNAs and the physiology of the progeny. In this piece, we discuss the heritable consequences of transient destabilization of germ granules and elaborate on the various small RNA-related processes that act in the germ granules. We further propose that germ granules may serve as environment sensors that translate environmental changes to inheritable small RNA-based responses.

6.
Curr Biol ; 29(17): 2880-2891.e4, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31378614

ABSTRACT

In C. elegans nematodes, components of liquid-like germ granules were shown to be required for transgenerational small RNA inheritance. Surprisingly, we show here that mutants with defective germ granules can nevertheless inherit potent small RNA-based silencing responses, but some of the mutants lose this ability after many generations of homozygosity. Animals mutated in pptr-1, which is required for stabilization of P granules in the early embryo, display extraordinarily strong heritable RNAi responses, lasting for tens of generations. Intriguingly, the RNAi capacity of descendants derived from mutants defective in the core germ granule proteins MEG-3 and MEG-4 is determined by the genotype of the ancestors and changes transgenerationally. Further, whether the meg-3/4 mutant alleles were present in the paternal or maternal lineages leads to different transgenerational consequences. Small RNA inheritance, rather than maternal contribution of the germ granules themselves, mediates the transgenerational defects in RNAi of meg-3/4 mutants and their progeny. Accordingly, germ granule defects lead to heritable genome-wide mis-expression of endogenous small RNAs. Upon disruption of germ granules, hrde-1 mutants can inherit RNAi, although HRDE-1 was previously thought to be absolutely required for RNAi inheritance. We propose that germ granules sort and shape the RNA pool, and that small RNA inheritance maintains this activity for multiple generations.


Subject(s)
Caenorhabditis elegans/genetics , Germ Cells/metabolism , Inheritance Patterns , RNA, Helminth/genetics , RNA, Small Interfering/genetics , Animals
7.
Philos Trans R Soc Lond B Biol Sci ; 374(1770): 20180125, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30966881

ABSTRACT

In recent years, studies in Caenorhabditis elegans nematodes have shown that different stresses can generate multigenerational changes. Here, we show that worms that grow in liquid media, and also their plate-grown progeny, are different from worms whose ancestors were grown on plates. It has been suggested that C. elegans might encounter liquid environments in nature, although actual observations in the wild are few and far between. By contrast, in the laboratory, growing worms in liquid is commonplace, and often used as an alternative to growing worms on agar plates, to control the composition of the worms' diet, to starve (and synchronize) worms or to grow large populations for biochemical assays. We found that plate-grown descendants of M9 liquid medium-grown worms were longer than control worms, and the heritable effects were already apparent very early in development. We tested for the involvement of different known epigenetic inheritance mechanisms, but could not find a single mutant in which these inter-generational effects are cancelled. While we found that growing in liquid always leads to inter-generational changes in the worms' size, trans-generational effects were found to be variable, and in some cases, the effects were gone after one to two generations. These results demonstrate that standard cultivation conditions in early life can dramatically change the worms' physiology in adulthood, and can also affect the next generations. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.


Subject(s)
Caenorhabditis elegans/genetics , Epigenesis, Genetic , Animals , Caenorhabditis elegans/growth & development , Diet , Heredity
8.
Elife ; 82019 03 14.
Article in English | MEDLINE | ID: mdl-30869075

ABSTRACT

In Caenorhabditis elegans, RNA interference (RNAi) responses can transmit across generations via small RNAs. RNAi inheritance is associated with Histone-3-Lysine-9 tri-methylation (H3K9me3) of the targeted genes. In other organisms, maintenance of silencing requires a feed-forward loop between H3K9me3 and small RNAs. Here, we show that in C. elegans not only is H3K9me3 unnecessary for inheritance, the modification's function depends on the identity of the RNAi-targeted gene. We found an asymmetry in the requirement for H3K9me3 and the main worm H3K9me3 methyltransferases, SET-25 and SET-32. Both methyltransferases promote heritable silencing of the foreign gene gfp, but are dispensable for silencing of the endogenous gene oma-1. Genome-wide examination of heritable endogenous small interfering RNAs (endo-siRNAs) revealed that endo-siRNAs that depend on SET-25 and SET-32 target newly acquired and highly H3K9me3 marked genes. Thus, 'repressive' chromatin marks could be important specifically for heritable silencing of genes which are flagged as 'foreign', such as gfp. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Epigenesis, Genetic , Histones/metabolism , Protein Processing, Post-Translational , RNA, Small Untranslated/metabolism , Wills , Animals , Caenorhabditis elegans Proteins/metabolism , Gene Silencing , Histone Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Methylation
9.
Curr Biol ; 27(14): R720-R730, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28743023

ABSTRACT

Examples of transgenerational inheritance of environmental responses are rapidly accumulating. In Caenorhabditis elegans nematodes, such heritable information transmits across generations in the form of RNA-dependent RNA polymerase-amplified small RNAs. Regulatory small RNAs enable sequence-specific gene regulation, and unlike chromatin modifications, can move between tissues, and escape from immediate germline reprogramming. In this review, we discuss the path that small RNAs take from the soma to the germline, and elaborate on the mechanisms that maintain or erase parental small RNA responses after a specific number of generations. We focus on the intricate interactions between heritable small RNAs and histone modifications, deposited on specific loci. A trace of heritable chromatin marks, in particular trimethylation of histone H3 lysine 9, is deposited on RNAi-targeted loci. However, how these modifications regulate RNAi or small RNA inheritance was until recently unclear. Integrating the very latest literature, we suggest that changes to histone marks may instigate transgenerational gene regulation indirectly, by affecting the biogenesis of heritable small RNAs. Inheritance of small RNAs could spread adaptive ancestral responses.


Subject(s)
Caenorhabditis elegans/genetics , Gene Expression Regulation , Inheritance Patterns , RNA, Helminth/genetics , RNA, Small Interfering/genetics , Animals
10.
Curr Biol ; 27(8): 1138-1147, 2017 Apr 24.
Article in English | MEDLINE | ID: mdl-28343968

ABSTRACT

In C. elegans, alterations to chromatin produce transgenerational effects, such as inherited increase in lifespan and gradual loss of fertility. Inheritance of histone modifications can be induced by double-stranded RNA-derived heritable small RNAs. Here, we show that the mortal germline phenotype, which is typical of met-2 mutants, defective in H3K9 methylation, depends on HRDE-1, an argonaute that carries small RNAs across generations, and is accompanied by accumulated transgenerational misexpression of heritable small RNAs. We discovered that MET-2 inhibits small RNA inheritance, and, as a consequence, induction of RNAi in met-2 mutants leads to permanent RNAi responses that do not terminate even after more than 30 generations. We found that potentiation of heritable RNAi in met-2 animals results from global hyperactivation of the small RNA inheritance machinery. Thus, changes in histone modifications can give rise to drastic transgenerational epigenetic effects, by controlling the overall potency of small RNA inheritance.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , DNA Methylation , Histone-Lysine N-Methyltransferase/genetics , RNA Interference , Animals , Caenorhabditis elegans/growth & development , Chromatin/genetics , Germ Cells , Histones/genetics , Histones/metabolism , Inheritance Patterns , Phenotype , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...