Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(1): 822-828, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36511338

ABSTRACT

Dynamic nuclear polarization (DNP) is a method to enhance the low sensitivity of nuclear magnetic resonance (NMR) via spin polarization transfer from electron spins to nuclear spins. In the liquid state, this process is mediated by fast modulations of the electron-nuclear hyperfine coupling and its efficiency depends strongly on the applied magnetic field. A peculiar case study is triphenylphosphine (PPh3) dissolved in benzene and doped with BDPA radical because it gives 31P-NMR signal enhancements of two orders of magnitude up to a magnetic field of 14.1 T. Here we show that the large 31P enhancements of BDPA/PPh3 in benzene at 1.2 T (i) decrease when the moieties are dissolved in other organic solvents, (ii) are strongly reduced when using a nitroxide radical, and (iii) vanish with pentavalent 31P triphenylphosphine oxide. Those experimental observations are rationalized with numerical calculations based on density functional theory that show the tendency of BDPA and PPh3 to form a weak complex via non-covalent interaction that leads to large hyperfine couplings to 31P (ΔAiso ≥ 13 MHz). This mechanism is hampered in other investigated systems. The case study of 31P-DNP in PPh3 is an important example that extends the current understanding of DNP in the liquids state: non-covalent interactions between radical and target can be particularly effective to obtain large NMR signal enhancements.

2.
Phys Chem Chem Phys ; 23(8): 4480-4485, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33599637

ABSTRACT

We report a large variation in liquid DNP performance of up to a factor of about five in coupling factor among organic radicals commonly used as polarizing agents. A comparative study of 1H and 13C DNP in model systems shows the impact of the spin density distribution and accessibility of the radical site by the target molecule.

3.
Angew Chem Int Ed Engl ; 58(5): 1402-1406, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30485626

ABSTRACT

Nuclear magnetic resonance (NMR) techniques play an essential role in natural science and medicine. In spite of the tremendous utility associated with the small energies detected, the most severe limitation is the low signal-to-noise ratio. Dynamic nuclear polarization (DNP), a technique based on transfer of polarization from electron to nuclear spins, has emerged as a tool to enhance sensitivity of NMR. However, the approach in liquids still faces several challenges. Herein we report the observation of room-temperature, liquid DNP 13 C signal enhancements in organic small molecules as high as 600 at 9.4 Tesla and 800 at 1.2 Tesla. A mechanistic investigation of the 13 C-DNP field dependence shows that DNP efficiency is raised by proper choice of the polarizing agent (paramagnetic center) and by halogen atoms as mediators of scalar hyperfine interaction. Observation of sizable DNP of 13 CH2 and 13 CH3 groups in organic molecules at 9.4 T opens perspective for a broader application of this method.

4.
Nat Chem ; 9(7): 676-680, 2017 07.
Article in English | MEDLINE | ID: mdl-28644482

ABSTRACT

Nuclear magnetic resonance (NMR) is a fundamental spectroscopic technique for the study of biological systems and materials, molecular imaging and the analysis of small molecules. It detects interactions at very low energies and is thus non-invasive and applicable to a variety of targets, including animals and humans. However, one of its most severe limitations is its low sensitivity, which stems from the small interaction energies involved. Here, we report that dynamic nuclear polarization in liquid solution and at room temperature can enhance the NMR signal of 13C nuclei by up to three orders of magnitude at magnetic fields of ∼3 T. The experiment can be repeated within seconds for signal averaging, without interfering with the sample magnetic homogeneity. The method is therefore compatible with the conditions required for high-resolution NMR. Enhancement of 13C signals on various organic compounds opens up new perspectives for dynamic nuclear polarization as a general tool to increase the sensitivity of liquid NMR.

5.
Chem Rec ; 14(6): 1116-33, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25316264

ABSTRACT

A systematic review and analysis of the most stable spatial arrangements of n carbon, n oxygen, and 2n hydrogen atoms including vibrational zero-point energy up to n = 5 shows that small-molecule aggregates win, typically followed by thermally unstable molecules, before kinetically stable molecules and finally carbohydrates are found. Near n ≈ 60 a crossover to carbon allotropes and ice as the global minimum structure is expected and the asymptotic limit is most likely graphite and ice. Implications for astrochemical and fermentation processes are discussed. Density functionals like B3LYPD3 are found to describe these energy sequences quite poorly, mostly due to an overestimated stability of carbon in high oxidation states.


Subject(s)
Carbohydrates/chemistry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...