Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Blood Adv ; 6(21): 5774-5785, 2022 11 08.
Article in English | MEDLINE | ID: mdl-35349631

ABSTRACT

In chronic lymphocytic leukemia (CLL) patients who achieve a complete remission (CR) to anti-CD19 chimeric antigen receptor T cells (CART-19), remissions are remarkably durable. Preclinical data suggesting synergy between CART-19 and the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib prompted us to conduct a prospective single-center phase 2 trial in which we added autologous anti-CD19 humanized binding domain T cells (huCART-19) to ibrutinib in patients with CLL not in CR despite ≥6 months of ibrutinib. The primary endpoints were safety, feasibility, and achievement of a CR within 3 months. Of 20 enrolled patients, 19 received huCART-19. The median follow-up for all infused patients was 41 months (range, 0.25-58 months). Eighteen patients developed cytokine release syndrome (CRS; grade 1-2 in 15 of 18 subjects), and 5 developed neurotoxicity (grade 1-2 in 4 patients, grade 4 in 1 patient). While the 3-month CR rate among International Working Group on CLL (iwCLL)-evaluable patients was 44% (90% confidence interval [CI], 23-67%), at 12 months, 72% of patients tested had no measurable residual disease (MRD). The estimated overall and progression-free survival at 48 months were 84% and 70%, respectively. Of 15 patients with undetectable MRD at 3 or 6 months, 13 remain in ongoing CR at the last follow-up. In patients with CLL not achieving a CR despite ≥6 months of ibrutinib, adding huCART-19 mediated a high rate of deep and durable remissions. ClinicalTrials.gov number, NCT02640209.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Antigens, CD19 , Disease-Free Survival , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Neoplasm, Residual/drug therapy , Prospective Studies , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , T-Lymphocytes
2.
J Clin Oncol ; 39(27): 3044-3055, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34156874

ABSTRACT

PURPOSE: CD19-targeted chimeric antigen receptor (CAR)-modified T cells demonstrate unprecedented responses in B-cell acute lymphoblastic leukemia (B-ALL); however, relapse remains a substantial challenge. Short CAR T-cell persistence contributes to this risk; therefore, strategies to improve persistence are needed. METHODS: We conducted a pilot clinical trial of a humanized CD19 CAR T-cell product (huCART19) in children and young adults with relapsed or refractory B-ALL (n = 72) or B-lymphoblastic lymphoma (n = 2), treated in two cohorts: with (retreatment, n = 33) or without (CAR-naive, n = 41) prior CAR exposure. Patients were monitored for toxicity, response, and persistence of huCART19. RESULTS: Seventy-four patients 1-29 years of age received huCART19. Cytokine release syndrome developed in 62 (84%) patients and was grade 4 in five (6.8%). Neurologic toxicities were reported in 29 (39%), three (4%) grade 3 or 4, and fully resolved in all cases. The overall response rate at 1 month after infusion was 98% (100% in B-ALL) in the CAR-naive cohort and 64% in the retreatment cohort. At 6 months, the probability of losing huCART19 persistence was 27% (95% CI, 14 to 41) for CAR-naive and 48% (95% CI, 30 to 64) for retreatment patients, whereas the incidence of B-cell recovery was 15% (95% CI, 6 to 28) and 58% (95% CI, 33 to 77), respectively. Relapse-free survival at 12 and 24 months, respectively, was 84% (95% CI, 72 to 97) and 74% (95% CI, 60 to 90) in CAR-naive and 74% (95% CI, 56 to 97) and 58% (95% CI, 37 to 90) in retreatment cohorts. CONCLUSION: HuCART19 achieved durable remissions with long-term persistence in children and young adults with relapsed or refractory B-ALL, including after failure of prior CAR T-cell therapy.


Subject(s)
Antigens, CD19/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Pilot Projects , Young Adult
3.
Stem Cells Dev ; 30(3): 119-127, 2021 02.
Article in English | MEDLINE | ID: mdl-33307968

ABSTRACT

The global COVID-19 pandemic has prompted urgent need for potential therapies for severe respiratory consequences resulting from coronavirus infection. New therapeutic agents that will attenuate ongoing inflammation and at the same time promote regeneration of injured lung epithelial cells are urgently needed. Cell-based therapies, primarily involving mesenchymal stromal cells (MSCs) and their derivatives, are currently investigated worldwide for SARS-CoV-2-induced lung diseases. A significant number of academic centers and companies globally have already initiated such trials. However, at a time of unprecedented need, it is also foreseen that families and caregivers will seek all available options, including access to cell-based and other investigational products, even before proven safety and efficacy as well as regulatory approval. This should not be an excuse for opportunists to sell or advertise unproven therapies of any kind. "Compassionate use" should be conducted in the context of a clinical investigation framed by strict ethical and regulatory permissions, with the goal of obtaining mechanistic information wherever possible.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Pandemics/prevention & control , COVID-19/virology , Cell- and Tissue-Based Therapy/methods , Humans , Lung/virology , Mesenchymal Stem Cells/cytology , SARS-CoV-2/pathogenicity
4.
Blood Adv ; 4(20): 5174-5183, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33095872

ABSTRACT

Chimeric antigen receptor (CAR) T-cells directed against CD19 have drastically altered outcomes for children with relapsed and refractory acute lymphoblastic leukemia (r/r ALL). Pediatric patients with r/r ALL treated with CAR-T are at increased risk of both cytokine release syndrome (CRS) and sepsis. We sought to investigate the biologic differences between CRS and sepsis and to develop predictive models which could accurately differentiate CRS from sepsis at the time of critical illness. We identified 23 different cytokines that were significantly different between patients with sepsis and CRS. Using elastic net prediction modeling and tree classification, we identified cytokines that were able to classify subjects as having CRS or sepsis accurately. A markedly elevated interferon γ (IFNγ) or a mildly elevated IFNγ in combination with a low IL1ß were associated with CRS. A normal to mildly elevated IFNγ in combination with an elevated IL1ß was associated with sepsis. This combination of IFNγ and IL1ß was able to categorize subjects as having CRS or sepsis with 97% accuracy. As CAR-T therapies become more common, these data provide important novel information to better manage potential associated toxicities.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Sepsis , Child , Critical Illness , Cytokine Release Syndrome , Humans , Receptors, Antigen, T-Cell , Sepsis/diagnosis
5.
J Clin Oncol ; 38(25): 2862-2871, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32298202

ABSTRACT

PURPOSE: To describe long-term outcomes of anti-CD19 chimeric antigen receptor T (CART) cells in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). METHODS: Between January 2013 and June 2016, 42 patients with relapsed or refractory CLL were enrolled in this study and 38 were infused with anti-CD19 CART cells (CART-19). Of these, 28 patients were initially randomly assigned to receive a low (5 × 107) or high (5 × 108) dose of CART-19, and 24 were evaluable for response assessment. After an interim analysis, 10 additional patients received the selected (high) dose and of these, eight were evaluable for response. Patients were followed for a median 31.5 months (range, 2 to 75 months). RESULTS: At 4 weeks, the complete and overall responses for the 32 evaluable patients were 28% (90% CI, 16% to 44%) and 44% (90% CI, 29% to 60%), respectively. The median overall survival (OS) for all patients was 64 months; there was no statistically significant difference between low- and high-dose groups (P = .84). Regardless of dose, prolonged survival was observed in patients who achieved a CR versus those who did not (P = .035), with median OS not reached in patients with CR versus 64 months in those without CR. The median progression-free survival was 40.2 months in patients with CR and 1 month in those without a CR (P < .0001). Toxicity was comparable in both dose groups. CONCLUSION: In patients with advanced CLL, a 5 × 108 dose of CART-19 may be more effective than 5 × 107 CART-19 at inducing CR without excessive toxicity. Attainment of a CR after CART-19 infusion, regardless of cell dose, is associated with longer OS and progression-free survival in patients with relapsed CLL.


Subject(s)
Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Aged , Antigens, CD19/immunology , Cytokine Release Syndrome/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunotherapy, Adoptive/adverse effects , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Male , Middle Aged , Progression-Free Survival , Receptors, Chimeric Antigen/immunology , Recurrence , Survival Rate , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
6.
J Clin Oncol ; 38(5): 415-422, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31815579

ABSTRACT

PURPOSE: The anti-CD19 chimeric antigen receptor T-cell therapy tisagenlecleucel (CTL019) has an 81% response rate in children with relapsed or chemotherapy refractory (r/r) B-cell acute lymphoblastic leukemia (ALL). Cytokine release syndrome (CRS) is a life-threatening treatment-related toxicity that limits the full therapeutic potential in adults. We report outcomes for adults with r/r ALL treated with an optimized CTL019 dosing and CRS management strategy. METHODS: Adults with r/r B-cell ALL received CTL019 in 1 of 2 trials. Patients received lymphodepletion followed by CTL019 as either a one-time infusion or fractionated infusions split over 3 days (day 1, 10%; day 2, 30%; day 3, 60%), which allowed for day 2 and day 3 doses to be held for early CRS. Total planned CTL019 dose varied with adaptive protocol modifications in response to efficacy and CRS toxicity. RESULTS: Thirty-five adults with r/r ALL received CTL019 in 1 of 3 dosing cohorts. The low-dose cohort (n = 9) received single or fractionated dosing and had manageable toxicity with a 33% complete remission (CR) rate. In the high-dose single infusion cohort, 3 of 6 patients with refractory CRS concurrent with culture-positive sepsis died, and 3 achieved CR. The 20 patients in the high-dose fractionated (HDF) cohort had a 90% CR rate and manageable CRS. The HDF cohort had the highest survival, with a 2-year overall survival of 73% (95% CI, 46% to 88%) and event-free survival of 49.5% (95% CI, 21% to 73%). CONCLUSION: Fractionated dosing of CTL019 with intrapatient dose modification optimizes safety without compromising efficacy in adults with r/r ALL.


Subject(s)
Immunotherapy, Adoptive/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/therapeutic use , Adult , Age Factors , Aged , Female , Humans , Immunotherapy, Adoptive/adverse effects , Male , Middle Aged , Survival Rate , Young Adult
7.
Blood ; 132(10): 1022-1026, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29925499

ABSTRACT

Chimeric antigen receptor (CAR)-modified T cells are being investigated in many settings, including classical Hodgkin lymphoma (cHL). The unique biology of cHL, characterized by scant Hodgkin and Reed-Sternberg (HRS) cells within an immunosuppressive tumor microenvironment (TME), may pose challenges for cellular therapies directly targeting antigens expressed on HRS cells. We hypothesized that eradicating CD19+ B cells within the TME and the putative circulating CD19+ HRS clonotypic cells using anti-CD19-directed CAR-modified T cells (CART19) may indirectly affect HRS cells, which do not express CD19. Here we describe our pilot trial using CART19 in patients with relapsed or refractory cHL. To limit potential toxicities, we used nonviral RNA CART19 cells, which are expected to express CAR protein for only a few days, as opposed to CART19 generated by viral vector transduction, which expand in vivo and retain CAR expression. All 5 enrolled patients underwent successful manufacturing of nonviral RNA CART19, and 4 were infused with protocol-specified cell dose. There were no severe toxicities. Responses were seen, but these were transient. To our knowledge, this is the first CART19 clinical trial to use nonviral RNA gene delivery. This trial was registered at www.clinicaltrials.gov as #NCT02277522 (adult) and #NCT02624258 (pediatric).


Subject(s)
Gene Transfer Techniques , Hodgkin Disease/therapy , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Adult , Female , Hodgkin Disease/genetics , Hodgkin Disease/immunology , Humans , Male , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
8.
Cancer Immunol Res ; 2(2): 112-20, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24579088

ABSTRACT

Off-target toxicity due to the expression of target antigens in normal tissue represents a major obstacle to the use of chimeric antigen receptor (CAR)-engineered T cells for treatment of solid malignancies. To circumvent this issue, we established a clinical platform for engineering T cells with transient CAR expression by using in vitro transcribed mRNA encoding a CAR that includes both the CD3-ζ and 4-1BB co-stimulatory domains. We present two case reports from ongoing trials indicating that adoptive transfer of mRNA CAR T cells that target mesothelin (CARTmeso cells) is feasible and safe without overt evidence of off-tumor on-target toxicity against normal tissues. CARTmeso cells persisted transiently within the peripheral blood after intravenous administration and migrated to primary and metastatic tumor sites. Clinical and laboratory evidence of antitumor activity was demonstrated in both patients and the CARTmeso cells elicited an antitumor immune response revealed by the development of novel anti-self antibodies. These data demonstrate the potential of utilizing mRNA engineered T cells to evaluate, in a controlled manner, potential off-tumor on-target toxicities and show that short-lived CAR T cells can induce epitope-spreading and mediate antitumor activity in patients with advanced cancer. Thus, these findings support the development of mRNA CAR-based strategies for carcinoma and other solid tumors.


Subject(s)
GPI-Linked Proteins/immunology , Immunotherapy, Adoptive/methods , Lung Neoplasms/therapy , Mesothelioma/therapy , Pancreatic Neoplasms/therapy , Pleural Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Aged , Aged, 80 and over , Chimerism , Electroporation/methods , Feasibility Studies , Genetic Engineering/methods , Humans , Immunotherapy, Adoptive/adverse effects , Lung Neoplasms/immunology , Male , Mesothelin , Mesothelioma/immunology , Mesothelioma, Malignant , Pancreatic Neoplasms/immunology , Pleural Neoplasms/immunology , RNA, Messenger/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL