Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Mol Cancer Ther ; 23(7): 924-938, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38641411

ABSTRACT

Although patient-derived xenografts (PDX) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating the comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and assessing a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy.


Subject(s)
Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Neoplasms/pathology , Neoplasms/drug therapy , National Cancer Institute (U.S.) , United States , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Consensus
2.
J Hepatol ; 80(4): 610-621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38242326

ABSTRACT

BACKGROUND & AIMS: Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS: RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS: HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 µM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS: Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS: Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Mice , Animals , Panobinostat/pharmacology , Panobinostat/therapeutic use , Hepatoblastoma/drug therapy , Irinotecan/therapeutic use , Vincristine/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/chemically induced , Histone Deacetylase Inhibitors/therapeutic use , Liver Neoplasms/pathology , Hydroxamic Acids/pharmacology
3.
Article in English | MEDLINE | ID: mdl-38052483

ABSTRACT

In 2016, a group of researchers engaged in the development of patient-derived xenografts (PDXs) of human breast cancer provided a comprehensive review of the state of the field. In that review, they summarized the clinical problem that PDXs might address, the technical approaches to their generation (including a discussion of host animals and transplant conditions tested), and presented transplantation success (take) rates across groups and across transplantation conditions. At the time, there were just over 500 unique PDX models created by these investigators representing all three clinically defined subtypes (ER+, HER2+, and TNBC). Today, many of these PDX resources have at least doubled in size, and several more PDX development groups now exist, such that there may be well upward of 1000 PDX models of human breast cancer in existence worldwide. They also presented a series of open questions for the field. Many of these questions have been addressed. However, several remain open, or only partially addressed. Herein, we revisit these questions, and recount the progress that has been made in a number of areas with respect to generation, characterization, and use of PDXs in translational research, and re-present questions that remain open. These open questions, and others, are now being addressed not only by individual investigators, but also large, well-funded consortia including the PDXNet program of the National Cancer Institute in the United States, and the EuroPDX Consortium, an organization of PDX developers across Europe. Finally, we discuss the new opportunities in PDX-based research.


Subject(s)
Breast Neoplasms , Animals , Humans , Female , Xenograft Model Antitumor Assays , Heterografts , Disease Models, Animal , Translational Research, Biomedical
4.
Cell Rep Med ; 4(12): 101326, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118413

ABSTRACT

Multiple cancers exhibit aberrant protein arginine methylation by both type I arginine methyltransferases, predominately protein arginine methyltransferase 1 (PRMT1) and to a lesser extent PRMT4, and by type II PRMTs, predominately PRMT5. Here, we perform targeted proteomics following inhibition of PRMT1, PRMT4, and PRMT5 across 12 cancer cell lines. We find that inhibition of type I and II PRMTs suppresses phosphorylated and total ATR in cancer cells. Loss of ATR from PRMT inhibition results in defective DNA replication stress response activation, including from PARP inhibitors. Inhibition of type I and II PRMTs is synergistic with PARP inhibition regardless of homologous recombination function, but type I PRMT inhibition is more toxic to non-malignant cells. Finally, we demonstrate that the combination of PARP and PRMT5 inhibition improves survival in both BRCA-mutant and wild-type patient-derived xenografts without toxicity. Taken together, these results demonstrate that PRMT5 inhibition may be a well-tolerated approach to sensitize tumors to PARP inhibition.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Neoplasms/drug therapy , Cell Line , DNA Replication , Arginine/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/therapeutic use , Repressor Proteins/metabolism
5.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745510

ABSTRACT

Tumor-initiating cells (TIC) are a tumor cell subpopulation thought to be responsible for therapeutic resistance and metastasis. Using a S ignal T ransducer and A ctivator of T ranscription (STAT) reporter, and a STAT-responsive lineage tracing system, we enriched for cells with enhanced mammosphere-forming potential in some, but not all, triple-negative breast cancer xenograft models (TNBC) indicating TIC-related and TIC-independent functions for STAT signaling. Single-cell RNA sequencing (scRNA-seq) of reporter-tagged xenografts identified a common interferon-associated transcriptional state, previously linked to inflammation and macrophage differentiation, in TIC. Similar transcriptional states exist in human breast cancer patient scRNA-seq datasets. Flow cytometric sorting using bone marrow stromal cell antigen 2 (BST2), a marker of this state, enriched for TIC, and BST2 knockdown reduced mammosphere-forming potential. These results suggest TIC may exploit the interferon response pathway to promote their activity in TNBC. Our results lay the groundwork to target interferon-associated pathways in TIC in a subset of TNBC.

6.
PLoS Comput Biol ; 19(8): e1011365, 2023 08.
Article in English | MEDLINE | ID: mdl-37578979

ABSTRACT

Proper characterization of cancer cell states within the tumor microenvironment is a key to accurately identifying matching experimental models and the development of precision therapies. To reconstruct this information from bulk RNA-seq profiles, we developed the XDec Simplex Mapping (XDec-SM) reference-optional deconvolution method that maps tumors and the states of constituent cells onto a biologically interpretable low-dimensional space. The method identifies gene sets informative for deconvolution from relevant single-cell profiling data when such profiles are available. When applied to breast tumors in The Cancer Genome Atlas (TCGA), XDec-SM infers the identity of constituent cell types and their proportions. XDec-SM also infers cancer cells states within individual tumors that associate with DNA methylation patterns, driver somatic mutations, pathway activation and metabolic coupling between stromal and breast cancer cells. By projecting tumors, cancer cell lines, and PDX models onto the same map, we identify in vitro and in vivo models with matching cancer cell states. Map position is also predictive of therapy response, thus opening the prospects for precision therapy informed by experiments in model systems matched to tumors in vivo by cancer cell state.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Methylation/genetics , RNA-Seq , Cell Line , Gene Expression Profiling , Tumor Microenvironment/genetics
7.
Tomography ; 9(3): 995-1009, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37218941

ABSTRACT

Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute's (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases of cancer prevention and treatment. The use of oncology models, such as patient-derived tumor xenografts (PDX) and genetically engineered mouse models (GEMMs), has ushered in an era of co-clinical trials by which preclinical studies can inform clinical trials and protocols, thus bridging the translational divide in cancer research. Similarly, preclinical imaging fills a translational gap as an enabling technology for translational imaging research. Unlike clinical imaging, where equipment manufacturers strive to meet standards in practice at clinical sites, standards are neither fully developed nor implemented in preclinical imaging. This fundamentally limits the collection and reporting of metadata to qualify preclinical imaging studies, thereby hindering open science and impacting the reproducibility of co-clinical imaging research. To begin to address these issues, the NCI co-clinical imaging research program (CIRP) conducted a survey to identify metadata requirements for reproducible quantitative co-clinical imaging. The enclosed consensus-based report summarizes co-clinical imaging metadata information (CIMI) to support quantitative co-clinical imaging research with broad implications for capturing co-clinical data, enabling interoperability and data sharing, as well as potentially leading to updates to the preclinical Digital Imaging and Communications in Medicine (DICOM) standard.


Subject(s)
Metadata , Neoplasms , Animals , Mice , Humans , Reproducibility of Results , Diagnostic Imaging , Neoplasms/diagnostic imaging , Reference Standards
8.
Tomography ; 9(2): 750-758, 2023 03 27.
Article in English | MEDLINE | ID: mdl-37104131

ABSTRACT

Providing method descriptions that are more detailed than currently available in typical peer reviewed journals has been identified as an actionable area for improvement. In the biochemical and cell biology space, this need has been met through the creation of new journals focused on detailed protocols and materials sourcing. However, this format is not well suited for capturing instrument validation, detailed imaging protocols, and extensive statistical analysis. Furthermore, the need for additional information must be counterbalanced by the additional time burden placed upon researchers who may be already overtasked. To address these competing issues, this white paper describes protocol templates for positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) that can be leveraged by the broad community of quantitative imaging experts to write and self-publish protocols in protocols.io. Similar to the Structured Transparent Accessible Reproducible (STAR) or Journal of Visualized Experiments (JoVE) articles, authors are encouraged to publish peer reviewed papers and then to submit more detailed experimental protocols using this template to the online resource. Such protocols should be easy to use, readily accessible, readily searchable, considered open access, enable community feedback, editable, and citable by the author.


Subject(s)
Positron-Emission Tomography , Tomography, X-Ray Computed , Magnetic Resonance Imaging
9.
Tomography ; 9(2): 810-828, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37104137

ABSTRACT

Co-clinical trials are the concurrent or sequential evaluation of therapeutics in both patients clinically and patient-derived xenografts (PDX) pre-clinically, in a manner designed to match the pharmacokinetics and pharmacodynamics of the agent(s) used. The primary goal is to determine the degree to which PDX cohort responses recapitulate patient cohort responses at the phenotypic and molecular levels, such that pre-clinical and clinical trials can inform one another. A major issue is how to manage, integrate, and analyze the abundance of data generated across both spatial and temporal scales, as well as across species. To address this issue, we are developing MIRACCL (molecular and imaging response analysis of co-clinical trials), a web-based analytical tool. For prototyping, we simulated data for a co-clinical trial in "triple-negative" breast cancer (TNBC) by pairing pre- (T0) and on-treatment (T1) magnetic resonance imaging (MRI) from the I-SPY2 trial, as well as PDX-based T0 and T1 MRI. Baseline (T0) and on-treatment (T1) RNA expression data were also simulated for TNBC and PDX. Image features derived from both datasets were cross-referenced to omic data to evaluate MIRACCL functionality for correlating and displaying MRI-based changes in tumor size, vascularity, and cellularity with changes in mRNA expression as a function of treatment.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Magnetic Resonance Imaging , Image Processing, Computer-Assisted
10.
Cancer Res ; 83(19): 3237-3251, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37071495

ABSTRACT

Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE: Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Animals , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/genetics , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Mutation
11.
EMBO Mol Med ; 15(4): e16715, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36880458

ABSTRACT

Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2,000 breast tumors (777 estrogen receptor-negative, ER- ) from four independent cohorts. RANK protein expression was more frequent in ER- tumors, where it associated with poor outcome and poor response to chemotherapy. In ER- breast cancer patient-derived orthoxenografts (PDXs), RANKL inhibition reduced tumor cell proliferation and stemness, regulated tumor immunity and metabolism, and improved response to chemotherapy. Intriguingly, tumor RANK protein expression associated with poor prognosis in postmenopausal breast cancer patients, activation of NFKB signaling, and modulation of immune and metabolic pathways, suggesting that RANK signaling increases after menopause. Our results demonstrate that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and ER- breast cancer patients and support the therapeutic benefit of RANK pathway inhibitors, such as denosumab, in breast cancer patients with RANK+ ER- tumors after menopause.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Denosumab/pharmacology , Denosumab/therapeutic use , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/therapeutic use , Postmenopause , RANK Ligand , Signal Transduction
12.
Tomography ; 9(2): 657-680, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36961012

ABSTRACT

The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.


Subject(s)
Neoplasms , Animals , Mice , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/pathology , Disease Models, Animal , Diagnostic Imaging
13.
Tomography ; 9(1): 375-386, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36828382

ABSTRACT

Relevant to co-clinical trials, the goal of this work was to assess repeatability, reproducibility, and bias of the apparent diffusion coefficient (ADC) for preclinical MRIs using standardized procedures for comparison to performance of clinical MRIs. A temperature-controlled phantom provided an absolute reference standard to measure spatial uniformity of these performance metrics. Seven institutions participated in the study, wherein diffusion-weighted imaging (DWI) data were acquired over multiple days on 10 preclinical scanners, from 3 vendors, at 6 field strengths. Centralized versus site-based analysis was compared to illustrate incremental variance due to processing workflow. At magnet isocenter, short-term (intra-exam) and long-term (multiday) repeatability were excellent at within-system coefficient of variance, wCV [±CI] = 0.73% [0.54%, 1.12%] and 1.26% [0.94%, 1.89%], respectively. The cross-system reproducibility coefficient, RDC [±CI] = 0.188 [0.129, 0.343] µm2/ms, corresponded to 17% [12%, 31%] relative to the reference standard. Absolute bias at isocenter was low (within 4%) for 8 of 10 systems, whereas two high-bias (>10%) scanners were primary contributors to the relatively high RDC. Significant additional variance (>2%) due to site-specific analysis was observed for 2 of 10 systems. Base-level technical bias, repeatability, reproducibility, and spatial uniformity patterns were consistent with human MRIs (scaled for bore size). Well-calibrated preclinical MRI systems are capable of highly repeatable and reproducible ADC measurements.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Humans , Phantoms, Imaging , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Benchmarking
14.
iScience ; 26(1): 105799, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36619972

ABSTRACT

Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.

15.
NPJ Breast Cancer ; 8(1): 104, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36088362

ABSTRACT

TNBC is a heterogeneous subtype of breast cancer, and only a subset of TNBC can be established as PDXs. Here, we show that there is an engraftment bias toward TNBC with low levels of immune cell infiltration. Additionally, TNBC that failed to engraft show gene expression consistent with a cancer-promoting immunological state, leading us to hypothesize that the immunological state of the tumor and possibly the state of the immune system of the host may be essential for engraftment.

17.
Cancer Discov ; 12(11): 2586-2605, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36001024

ABSTRACT

Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-number aberrations identified a resistance-associated 19q13.31-33 deletion where LIG1, POLD1, and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were associated with lack of pathologic complete response, higher chromosomal instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer types, demonstrating broader clinical implications. SIGNIFICANCE: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape of chemotherapy response associations, including a 19q13.31-33 somatic deletion encoding genes serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN. This article is highlighted in the In This Issue feature, p. 2483.


Subject(s)
Proteogenomics , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Carboplatin , Proteomics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoadjuvant Therapy , X-ray Repair Cross Complementing Protein 1
18.
Sci Transl Med ; 14(652): eabn1926, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35857626

ABSTRACT

Triple-negative breast cancer (TNBC) and ovarian carcinomas (OvCas) with BRCA1 promoter methylation (BRCA1meth) respond more poorly to alkylating agents compared to those bearing mutations in BRCA1 and BRCA2 (BRCAmut). This is a conundrum given the biologically equivalent homologous recombination deficiency (HRD) induced by these genetic and epigenetic BRCA perturbations. We dissected this problem through detailed genomic analyses of TNBC and OvCa cohorts and experimentation with patient-derived xenografts and genetically engineered cell lines. We found that despite identical downstream genomic mutational signatures associated with BRCA1meth and BRCAmut states, BRCA1meth uniformly associates with poor outcomes. Exposure of BRCA1meth TNBCs to platinum chemotherapy, either as clinical treatment of a patient or as experimental in vivo exposure of preclinical patient derived xenografts, resulted in allelic loss of BRCA1 methylation and increased BRCA1 expression and platinum resistance. These data suggest that, unlike BRCAmut cancers, where BRCA loss is a genetically "fixed" deficiency state, BRCA1meth cancers are highly adaptive to genotoxin exposure and, through reversal of promoter methylation, recover BRCA1 expression and become resistant to therapy. We further found a specific augmented immune transcriptional signal associated with enhanced response to platinum chemotherapy but only in patients with BRCA-proficient cancers. We showed how integrating both this cancer immune signature and the presence of BRCA mutations results in more accurate predictions of patient response when compared to either HRD status or BRCA status alone. This underscores the importance of defining BRCA heterogeneity in optimizing the predictive precision of assigning response probabilities in TNBC and OvCa.


Subject(s)
Carcinoma , Ovarian Neoplasms , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Epigenomics , Female , Genomics , Humans , Mutation/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Platinum/pharmacology , Platinum/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
20.
J Mammary Gland Biol Neoplasia ; 27(2): 211-230, 2022 06.
Article in English | MEDLINE | ID: mdl-35697909

ABSTRACT

Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Cell Line , Disease Models, Animal , Female , Heterografts , Humans , Mice , Rats , Swine , Xenograft Model Antitumor Assays , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...