Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Gen Comp Endocrinol ; 320: 114010, 2022 05 01.
Article En | MEDLINE | ID: mdl-35231487

Neuropeptides and their receptors are fundamentally important in regulating many physiological and behavioural processes in insects. In this work, we have identified, cloned, and sequenced the tachykinin receptor (Rhopr-TKR) from Rhodnius prolixus, a vector of Chagas disease. The receptor is a G protein-coupled receptor belonging to the Rhodopsin Family A. The total length of the open reading frame of the Rhopr-TKR transcript is 1110 bp, which translates into a receptor of 338 amino acids. Fluorescent in-situ RNA-hybridization (FISH) for the Rhopr-TKR transcript shows a signal in a group of six bilaterally paired neurons in the protocerebrum of the brain, localized in a similar region as the insulin producing cells. To examine the role of tachykinin signaling in lipid and carbohydrate homeostasis we used RNA interference. Downregulation of the Rhopr-TKR transcript led to a decrease in the size of blood meal consumed and a significant increase in circulating carbohydrate and lipid levels. Further investigation revealed a close relationship between tachykinin and insulin signaling since the downregulation of the Rhopr-TKR transcript negatively affected the transcript expression for insulin-like peptide 1 (Rhopr-ILP1), insulin-like growth factor (Rhopr-IGF) and insulin receptor 1 (Rhopr-InR1) in both the central nervous system and fat body. Taken together, these findings suggest that tachykinin signaling regulates lipid and carbohydrate homeostasis via the insulin signaling pathway.


Chagas Disease , Rhodnius , Animals , Carbohydrates , Disease Vectors , Homeostasis , Lipids , Receptors, Tachykinin/metabolism , Rhodnius/metabolism , Tachykinins/metabolism
...