Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Neurology ; 103(1): e209501, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38870452

ABSTRACT

BACKGROUND AND OBJECTIVES: Generalized convulsive seizures (GCSs) are the main risk factor of sudden unexpected death in epilepsy (SUDEP), which is likely due to peri-ictal cardiorespiratory dysfunction. The incidence of GCS-induced cardiac arrhythmias, their relationship to seizure severity markers, and their role in SUDEP physiopathology are unknown. The aim of this study was to analyze the incidence of seizure-induced cardiac arrhythmias, their association with electroclinical features and seizure severity biomarkers, as well as their specific occurrences in SUDEP cases. METHODS: This is an observational, prospective, multicenter study of patients with epilepsy aged 18 years and older with recorded GCS during inpatient video-EEG monitoring for epilepsy evaluation. Exclusion criteria were status epilepticus and an obscured video recording. We analyzed semiologic and cardiorespiratory features through video-EEG (VEEG), electrocardiogram, thoracoabdominal bands, and pulse oximetry. We investigated the presence of bradycardia, asystole, supraventricular tachyarrhythmias (SVTs), premature atrial beats, premature ventricular beats, nonsustained ventricular tachycardia (NSVT), atrial fibrillation (Afib), ventricular fibrillation (VF), atrioventricular block (AVB), exaggerated sinus arrhythmia (ESA), and exaggerated sinus arrhythmia with bradycardia (ESAWB). A board-certified cardiac electrophysiologist diagnosed and classified the arrhythmia types. Bradycardia, asystole, SVT, NSVT, Afib, VF, AVB, and ESAWB were classified as arrhythmias of interest because these were of SUDEP pathophysiology value. The main outcome was the occurrence of seizure-induced arrhythmias of interest during inpatient VEEG monitoring. Moreover, yearly follow-up was conducted to identify SUDEP cases. Binary logistic generalized estimating equations were used to determine clinical-demographic and peri-ictal variables that were predictive of the presence of seizure-induced arrhythmias of interest. The z-score test for 2 population proportions was used to test whether the proportion of seizures and patients with postconvulsive ESAWB or bradycardia differed between SUDEP cases and survivors. RESULTS: This study includes data from 249 patients (mean age 37.2 ± 23.5 years, 55% female) who had 455 seizures. The most common arrhythmia was ESA, with an incidence of 137 of 382 seizures (35.9%) (106/224 patients [47.3%]). There were 50 of 352 seizure-induced arrhythmias of interest (14.2%) in 41 of 204 patients (20.1%). ESAWB was the commonest in 22 of 394 seizures (5.6%) (18/225 patients [8%]), followed by SVT in 18 of 397 seizures (4.5%) (17/228 patients [7.5%]). During follow-up (48.36 ± 31.34 months), 8 SUDEPs occurred. Seizure-induced bradycardia (3.8% vs 12.5%, z = -16.66, p < 0.01) and ESAWB (6.6% vs 25%; z = -3.03, p < 0.01) were over-represented in patients who later died of SUDEP. There was no association between arrhythmias of interest and seizure severity biomarkers (p > 0.05). DISCUSSION: Markers of seizure severity are not related to seizure-induced arrhythmias of interest, suggesting that other factors such as occult cardiac abnormalities may be relevant for their occurrence. Seizure-induced ESAWB and bradycardia were more frequent in SUDEP cases, although this observation was based on a very limited number of SUDEP patients. Further case-control studies are needed to evaluate the yield of arrhythmias of interest along with respiratory changes as potential SUDEP biomarkers.


Subject(s)
Arrhythmias, Cardiac , Electroencephalography , Humans , Female , Male , Adult , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Incidence , Middle Aged , Prospective Studies , Sudden Unexpected Death in Epilepsy/epidemiology , Seizures/epidemiology , Seizures/physiopathology , Epilepsy, Generalized/epidemiology , Epilepsy, Generalized/physiopathology , Aged , Young Adult , Electrocardiography , Adolescent
3.
J Biomed Semantics ; 15(1): 6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693592

ABSTRACT

Biomedical terminologies play a vital role in managing biomedical data. Missing IS-A relations in a biomedical terminology could be detrimental to its downstream usages. In this paper, we investigate an approach combining logical definitions and lexical features to discover missing IS-A relations in two biomedical terminologies: SNOMED CT and the National Cancer Institute (NCI) thesaurus. The method is applied to unrelated concept-pairs within non-lattice subgraphs: graph fragments within a terminology likely to contain various inconsistencies. Our approach first compares whether the logical definition of a concept is more general than  that of the other concept. Then, we check whether the lexical features of the concept are contained in those of the other concept. If both constraints are satisfied, we suggest a potentially missing IS-A relation between the two concepts. The method identified 982 potential missing IS-A relations for SNOMED CT and 100 for NCI thesaurus. In order to assess the efficacy of our approach, a random sample of results belonging to the "Clinical Findings" and "Procedure" subhierarchies of SNOMED CT and results belonging to the "Drug, Food, Chemical or Biomedical Material" subhierarchy of the NCI thesaurus were evaluated by domain experts. The evaluation results revealed that 118 out of 150 suggestions are valid for SNOMED CT and 17 out of 20 are valid for NCI thesaurus.


Subject(s)
Systematized Nomenclature of Medicine , Terminology as Topic , Vocabulary, Controlled , Logic
4.
Epilepsia ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738972

ABSTRACT

OBJECTIVE: The aim of this study was to develop a machine learning algorithm using an off-the-shelf digital watch, the Samsung watch (SM-R800), and evaluate its effectiveness for the detection of generalized convulsive seizures (GCS) in persons with epilepsy. METHODS: This multisite epilepsy monitoring unit (EMU) phase 2 study included 36 adult patients. Each patient wore a Samsung watch that contained accelerometer, gyroscope, and photoplethysmographic sensors. Sixty-eight time and frequency domain features were extracted from the sensor data and were used to train a random forest algorithm. A testing framework was developed that would better reflect the EMU setting, consisting of (1) leave-one-patient-out cross-validation (LOPO CV) on GCS patients, (2) false alarm rate (FAR) testing on nonseizure patients, and (3) "fixed-and-frozen" prospective testing on a prospective patient cohort. Balanced accuracy, precision, sensitivity, and FAR were used to quantify the performance of the algorithm. Seizure onsets and offsets were determined by using video-electroencephalographic (EEG) monitoring. Feature importance was calculated as the mean decrease in Gini impurity during the LOPO CV testing. RESULTS: LOPO CV results showed balanced accuracy of .93 (95% confidence interval [CI] = .8-.98), precision of .68 (95% CI = .46-.85), sensitivity of .87 (95% CI = .62-.96), and FAR of .21/24 h (interquartile range [IQR] = 0-.90). Testing the algorithm on patients without seizure resulted in an FAR of .28/24 h (IQR = 0-.61). During the "fixed-and-frozen" prospective testing, two patients had three GCS, which were detected by the algorithm, while generating an FAR of .25/24 h (IQR = 0-.89). Feature importance showed that heart rate-based features outperformed accelerometer/gyroscope-based features. SIGNIFICANCE: Commercially available wearable digital watches that reliably detect GCS, with minimum false alarm rates, may overcome usage adoption and other limitations of custom-built devices. Contingent on the outcomes of a prospective phase 3 study, such devices have the potential to provide non-EEG-based seizure surveillance and forecasting in the clinical setting.

5.
Ann Neurol ; 95(5): 998-1008, 2024 May.
Article in English | MEDLINE | ID: mdl-38400804

ABSTRACT

OBJECTIVE: Ictal central apnea (ICA) is a semiological sign of focal epilepsy, associated with temporal and frontal lobe seizures. In this study, using qualitative and quantitative approaches, we aimed to assess the localizational value of ICA. We also aimed to compare ICA clinical utility in relation to other seizure semiological features of focal epilepsy. METHODS: We analyzed seizures in patients with medically refractory focal epilepsy undergoing intracranial stereotactic electroencephalographic (SEEG) evaluations with simultaneous multimodal cardiorespiratory monitoring. A total of 179 seizures in 72 patients with reliable artifact-free respiratory signal were analyzed. RESULTS: ICA was seen in 55 of 179 (30.7%) seizures. Presence of ICA predicted a mesial temporal seizure onset compared to those without ICA (odds ratio = 3.8, 95% confidence interval = 1.3-11.6, p = 0.01). ICA specificity was 0.82. ICA onset was correlated with increased high-frequency broadband gamma (60-150Hz) activity in specific mesial or basal temporal regions, including amygdala, hippocampus, and fusiform and lingual gyri. Based on our results, ICA has an almost 4-fold greater association with mesial temporal seizure onset zones compared to those without ICA and is highly specific for mesial temporal seizure onset zones. As evidence of symptomatogenic areas, onset-synchronous increase in high gamma activity in mesial or basal temporal structures was seen in early onset ICA, likely representing anatomical substrates for ICA generation. INTERPRETATION: ICA recognition may help anatomoelectroclinical localization of clinical seizure onset to specific mesial and basal temporal brain regions, and the inclusion of these regions in SEEG evaluations may help accurately pinpoint seizure onset zones for resection. ANN NEUROL 2024;95:998-1008.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Male , Female , Adult , Middle Aged , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnosis , Sleep Apnea, Central/physiopathology , Sleep Apnea, Central/diagnosis , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/diagnosis , Seizures/physiopathology , Seizures/diagnosis , Young Adult , Electrocorticography/methods , Electroencephalography/methods , Adolescent , Epilepsies, Partial/physiopathology , Epilepsies, Partial/diagnosis
6.
Epilepsia ; 65(5): 1346-1359, 2024 May.
Article in English | MEDLINE | ID: mdl-38420750

ABSTRACT

OBJECTIVE: This study was undertaken to develop a standardized grading system based on expert consensus for evaluating the level of confidence in the localization of the epileptogenic zone (EZ) as reported in published studies, to harmonize and facilitate systematic reviews in the field of epilepsy surgery. METHODS: We conducted a Delphi study involving 22 experts from 18 countries, who were asked to rate their level of confidence in the localization of the EZ for various theoretical clinical scenarios, using different scales. Information provided in these scenarios included one or several of the following data: magnetic resonance imaging (MRI) findings, invasive electroencephalography summary, and postoperative seizure outcome. RESULTS: The first explorative phase showed an overall interrater agreement of .347, pointing to large heterogeneity among experts' assessments, with only 17% of the 42 proposed scenarios associated with a substantial level of agreement. A majority showed preferences for the simpler scale and single-item scenarios. The successive Delphi voting phases resulted in a majority consensus across experts, with more than two thirds of respondents agreeing on the rating of each of the tested single-item scenarios. High or very high levels of confidence were ascribed to patients with either an Engel class I or class IA postoperative seizure outcome, a well-delineated EZ according to all available invasive EEG (iEEG) data, or a well-delineated focal epileptogenic lesion on MRI. MRI signs of hippocampal sclerosis or atrophy were associated with a moderate level of confidence, whereas a low level was ascribed to other MRI findings, a poorly delineated EZ according to iEEG data, or an Engel class II-IV postoperative seizure outcome. SIGNIFICANCE: The proposed grading system, based on an expert consensus, provides a simple framework to rate the level of confidence in the EZ reported in published studies in a structured and harmonized way, offering an opportunity to facilitate and increase the quality of systematic reviews and guidelines in the field of epilepsy surgery.


Subject(s)
Consensus , Delphi Technique , Electroencephalography , Epilepsy , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/standards , Epilepsy/surgery , Epilepsy/diagnostic imaging , Epilepsy/diagnosis
7.
Neurology ; 102(2): e208041, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165346

ABSTRACT

BACKGROUND AND OBJECTIVES: We report the recording of sudden unexpected death in epilepsy (SUDEP) in a 68-year-old man with recent onset cryptogenic epilepsy, captured by video-EEG monitoring, at home in the company of his wife while sitting in a chair. This was only the third seizure of his life, the first 2 occurring 19 days previously. This rare event is a novel case of SUDEP recorded with ambulatory video EEG at home. The video is included by permission. METHODS: Electroclinical seizure and cardiorespiratory analysis was ascertained using a combination of video, EEG (Natus, standard 10-20 electrode), ECG, and sound. Respiratory rate was ascertained based on chest, abdominal, and facial respiratory movements, together with video and audio. RESULTS: The unique video-EEG recording illustrates the time course of apnea and bradycardia leading to terminal apnea in conjunction with prolonged postictal generalized EEG suppression. DISCUSSION: This case is illustrative of a wide spectrum of SUDEP cases, ranging from the highly intractable to the patient with newly diagnosed epilepsy with very few seizures. It illustrates that patients can succumb to SUDEP while awake and in the sitting position (1) very early in their epilepsy course, (2) without recognized risk factors other than generalized convulsive seizures, (3) even when accompanied.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Male , Humans , Aged , Apnea , Death, Sudden/etiology , Epilepsy/complications , Epilepsy/diagnosis , Electroencephalography , Seizures
8.
Epilepsia ; 65(3): 641-650, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265418

ABSTRACT

OBJECTIVE: Stereo-electroencephalography (SEEG) is the preferred method for intracranial localization of the seizure-onset zone (SOZ) in drug-resistant focal epilepsy. Occasionally SEEG evaluation fails to confirm the pre-implantation hypothesis. This leads to a decision tree regarding whether the addition of SEEG electrodes (two-step SEEG - 2sSEEG) or placement of subdural electrodes (SDEs) after SEEG (SEEG2SDE) would help. There is a dearth of literature encompassing this scenario, and here we aimed to characterize outcomes following unplanned two-step intracranial EEG (iEEG). METHODS: All 225 adult SEEG cases over 8 years at our institution were reviewed to extract patient data and outcomes following a two-step evaluation. Three raters independently quantified benefits of additional intracranial electrodes. The relationship between two-step iEEG benefit and clinical outcome was then analyzed. RESULTS: Fourteen patients underwent 2sSEEG and nine underwent SEEG2SDE. In the former cohort, the second SEEG procedure was performed for these reasons-precise localization of the SOZ (36%); defining margins of eloquent cortex (21%); and broadening coverage in the setting of non-localizable seizure onsets (43% of cases). Sixty-four percent of 2sSEEG cases were consistently deemed beneficial (Light's κ = 0.80). 2sSEEG performed for the first two indications was much more beneficial than when onsets were not localizable (100% vs 17%, p = .02). In the SEEG2SDE cohort, SDEs identified the SOZ and enabled delineation of margins relative to eloquent cortex in all cases. SIGNIFICANCE: The two-step iEEG is useful if the initial evaluation is broadly concordant with the original electroclinical hypothesis, where it can clarify onset zones or delineate safe surgical margins; however, it provides minimal benefit when the implantation hypothesis is erroneous, and we recommend that 2sSEEG not be generally utilized in such cases. SDE implantation after SEEG minimizes the need for SDEs and is helpful in delineating surgical boundaries relative to ictal-onset zones and eloquent cortex.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Adult , Humans , Electrodes, Implanted , Electroencephalography/methods , Electrocorticography/methods , Stereotaxic Techniques , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/surgery , Seizures/surgery , Retrospective Studies
9.
Epilepsy Res ; 199: 107259, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086218

ABSTRACT

OBJECTIVE: Preclinical data report within subject modifiable ailments emerge weeks prior to SUDEP, including sleep disorders and cardiorespiratory changes; findings which support anecdotal clinical data. Here, we bridge preclinical findings with future clinical/preclinical studies, and survey whether caretakers or family members of victims noticed transient changes prior to SUDEP. The aim of this pilot study is to identify potential modifiable changes that may synergistically increase SUDEP risk for future research. METHODS: A mobile electronic survey was posted on SUDEP community websites. The survey queried whether changes in seizures, sleep, physical well-being, emotional well-being, cognition, breathing, or heart rate were noticed before SUDEP. RESULTS: The most profound finding was that 85% of victims had multiple transient ailments prior to SUDEP. Changes in seizures (28/54), and sleep (30/58) occurred in more than 50% of the victims and represent the most influential changes identified. The second and third most influential changes were a reduction in physical well-being (25/57) and emotional well-being (26/56). Changes were observed within the last two months of life in approximately one third of the cases, and more than four months prior to SUDEP in approximately one third of cases, indicating a potential time frame for proactive preventative strategies. Respondents also noted changes in cognition (16/55), breathing (9/54) or heart rate (8/55). Data indicate these changes may be associated with increased SUDEP risk within subject. Study limitations include the responses were based on memory, there was a potential for data to be over reported, and caretakers were not prompted to observe changes a priori, thus some existing changes may have gone unnoticed. SIGNIFICANCE: Data support the preclinical findings that transient, subclinical (i.e., not severe enough to require medical intervention), modifiable ailments may increase risk of SUDEP. This suggests that just as an epilepsy type can change over a lifetime and epilepsy type-specific treatments can reduce SUDEP risk, further personalization of SUDEP risk will improve our understanding as to whether variables contribute to risk differently across lifespan. Thus, with a dynamic capacity to change, differing factors may contribute to the distribution of risk probability within an individual at any given time. Understanding whether different combinations of transient changes are specific to epilepsy type, age, or sex needs to be determined to move the field forward in hopes of developing a personalized approach to preventative strategies.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Pilot Projects , Death, Sudden/epidemiology , Death, Sudden/etiology , Seizures/epidemiology , Seizures/complications , Surveys and Questionnaires , Risk Factors
10.
Epilepsia ; 64(12): 3307-3318, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857465

ABSTRACT

OBJECTIVES: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined the volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by the presence or absence of FBTCS, ictal central apnea (ICA), and post-convulsive central apnea (PCCA). METHODS: Seventy-three patients with focal impaired awareness seizures without FBTC seizures (FBTCneg group) and 30 with FBTCS (FBTCpos group) recorded during video electroencephalography (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomic and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all patients with epilepsy and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between three groups: healthy subjects, FBTCneg and FBTCpos groups. The FBTCpos group was further subdivided by the presence of ICA and PCCA, verified by VEEG. RESULTS: Bilateral amygdala volumes were significantly increased in the FBTCpos cohort compared to healthy controls and the FBTCneg group. Patients with recorded PCCA had the highest increase in bilateral amygdala volume of the FBTCpos cohort. Amygdala neurite density index (NDI) values were decreased significantly in both the FBTCneg and FBTCpos groups relative to healthy controls, with values in the FBTCpos group being the lowest of the two. The presence of PCCA was associated with significantly lower NDI values vs the non-apnea FBTCpos group (p = 0.004). SIGNIFICANCE: Individuals with FBTCpos and PCCA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.


Subject(s)
Epilepsies, Partial , Epilepsy, Tonic-Clonic , Epilepsy , Sleep Apnea, Central , Humans , Sleep Apnea, Central/diagnostic imaging , Sleep Apnea, Central/etiology , Seizures , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/complications , Electroencephalography/methods , Amygdala/diagnostic imaging , Apnea
11.
Epilepsia ; 64(9): 2373-2384, 2023 09.
Article in English | MEDLINE | ID: mdl-37344924

ABSTRACT

OBJECTIVE: Severe respiratory dysfunction induced by generalized convulsive seizures (GCS) is now thought to be a common mechanism for sudden unexpected death in epilepsy (SUDEP). In a mouse model of seizure-induced death, increased interictal respiratory variability was reported in mice that later died of respiratory arrest after GCS. We studied respiratory variability in epilepsy patients as a predictive tool for severity of postictal hypoxemia, a potential biomarker for SUDEP risk. We then explored the relationship between respiratory variability and central CO2 drive, measured by the hypercapnic ventilatory response (HCVR). METHODS: We reviewed clinical, video-electroencephalography, and respiratory (belts, airflow, pulse oximeter, and HCVR) data of epilepsy patients. Mean, SD, and coefficient of variation (CV) of interbreath interval (IBI) were calculated. Primary outcomes were: (1) nadir of capillary oxygen saturation (SpO2 ) and (2) duration of oxygen desaturation. Poincaré plots of IBI were created. Covariates were evaluated in univariate models, then, based on Akaike information criteria (AIC), multivariate regression models were created. RESULTS: Of 66 GCS recorded in 131 subjects, 30 had interpretable respiratory data. In the multivariate model with the lowest AIC value, duration of epilepsy was a significant predictor of duration of oxygen desaturation. Duration of tonic phase and CV of IBI during the third postictal minute correlated with SpO2 nadir, whereas CV of IBI during non-rapid eye movement sleep had a negative correlation. Poincaré plots showed that long-term variability was significantly greater in subjects with ≥200 s of postictal oxygen desaturation after GCS compared to those with <200 s desaturation. Finally, HCVR slope showed a negative correlation with measures of respiratory variability. SIGNIFICANCE: These results indicate that interictal respiratory variability predicts severity of postictal oxygen desaturation, suggesting its utility as a potential biomarker. They also suggest that interictal respiratory control may be abnormal in some patients with epilepsy.


Subject(s)
Epilepsy, Generalized , Epilepsy , Respiration Disorders , Sudden Unexpected Death in Epilepsy , Humans , Electroencephalography/methods , Hypercapnia , Hypoxia , Oxygen , Seizures
12.
AMIA Jt Summits Transl Sci Proc ; 2023: 515-524, 2023.
Article in English | MEDLINE | ID: mdl-37350927

ABSTRACT

Early onset of seizure is a potential risk factor for Sudden Unexpected Death in Epilepsy (SUDEP). However, the first seizure onset information is often documented as clinical narratives in epilepsy monitoring unit (EMU) discharge summaries. Manually extracting first seizure onset time from discharge summaries is time consuming and labor-intensive. In this work, we developed a rule-based natural language processing pipeline for automatically extracting the temporal information of patients' first seizure onset from EMU discharge summaries. We use the Epilepsy and Seizure Ontology (EpSO) as the core knowledge resource and construct 4 extraction rules based on 300 randomly selected EMU discharge summaries. To evaluate the effectiveness of the extraction pipeline, we apply the constructed rules on another 200 unseen discharge summaries and compare the results against the manual evaluation of a domain expert. Overall, our extraction pipeline achieved a precision of 0.75, recall of 0.651, and F1-score of 0.697. This is an encouraging initial result which will allow us to gain insights into potentially better-performing approaches.

13.
Epilepsia ; 64(7): 1925-1938, 2023 07.
Article in English | MEDLINE | ID: mdl-37119434

ABSTRACT

OBJECTIVE: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing. METHODS: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline. RESULTS: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04). SIGNIFICANCE: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.


Subject(s)
Electrocorticography , Epilepsy , Respiratory Rate , Respiration , Respiratory Rate/physiology , Amygdala , Temporal Lobe , Thalamus , Prospective Studies
14.
Epilepsy Res ; 192: 107139, 2023 05.
Article in English | MEDLINE | ID: mdl-37068421

ABSTRACT

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.


Subject(s)
Epilepsies, Partial , Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Diffusion Tensor Imaging/methods , Apnea , Amygdala/diagnostic imaging , Epilepsies, Partial/complications , Epilepsies, Partial/diagnostic imaging
15.
medRxiv ; 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36993394

ABSTRACT

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.

16.
medRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993530

ABSTRACT

Objectives: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by presence or absence of FBTCS, ictal central apnea (ICA) and post-ictal central apnea (PICA). Methods: 73 patients with only-focal seizures and 30 with FBTCS recorded during video EEG (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomical and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all epilepsy patients and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between healthy subjects, and patients with only-focal seizures or FBTCS The FBTCS group was further subdivided by presence of ICA and PICA, verified by VEEG. Results: Bilateral amygdala volumes were significantly increased in the FBTCS cohort compared to healthy controls and the focal cohort. Patients with recorded PICA had the highest increase in bilateral amygdala volume of the FBTCS cohort.Amygdala neurite density index (NDI) values were significantly decreased in both the focal and FBTCS groups relative to healthy controls, with values in the FBTCS group being the lowest of the two. The presence of PICA was associated with significantly lower NDI values vs the non-apnea FBTCS group (p=0.004). Significance: Individuals with FBTCS and PICA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.

17.
Respiration ; 102(4): 274-286, 2023.
Article in English | MEDLINE | ID: mdl-36750046

ABSTRACT

BACKGROUND: Voluntary breath-holding (BH) triggers responses from central neural control and respiratory centers in order to restore breathing. Such responses can be observed using functional MRI (fMRI). OBJECTIVES: We used this paradigm in healthy volunteers with the view to develop a biomarker that could be used to investigate disorders of the central control of breathing at the individual patient level. METHOD: In 21 healthy human subjects (mean age±SD, 32.8 ± 9.9 years old), fMRI was used to determine, at both the individual and group levels, the physiological neural response to expiratory and inspiratory voluntary apneas, within respiratory control centers in the brain and brainstem. RESULTS: Group analysis showed that expiratory BH, but not inspiratory BH, triggered activation of the pontine respiratory group and raphe nuclei at the group level, with a significant relationship between the levels of activation and drop in SpO2. Using predefined ROIs, expiratory BH, and to a lesser extent, inspiratory BH were associated with activation of most respiratory centers. The right ventrolateral nucleus of the thalamus, right pre-Bötzinger complex, right VRG, right nucleus ambiguus, and left Kölliker-Fuse-parabrachial complex were only activated during inspiratory BH. Individual analysis identified activations of cortical/subcortical and brainstem structures related to respiratory control in 19 out of 21 subjects. CONCLUSION: Our study shows that BH paradigm allows to reliably trigger fMRI response from brainstem and cortical areas involved in respiratory control at the individual level, suggesting that it might serve as a clinically relevant biomarker to investigate conditions associated with an altered central control of respiration.


Subject(s)
Breath Holding , Respiratory Center , Humans , Young Adult , Adult , Respiratory Center/physiology , Respiration , Magnetic Resonance Imaging , Brain
18.
J Neurosurg ; 139(1): 229-237, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36585867

ABSTRACT

OBJECTIVE: Stereoelectroencephalography (SEEG) is designed to target distributed cortical networks responsible for electroclinical seizure syndrome and to enable localization of the site of seizure onset in patients with intractable epilepsy. When the preimplantation hypothesis invokes the bilateral mesial frontal lobes, sampling of several deep-seated cortical sites in both hemispheres is required. In this study, the authors have demonstrated the feasibility of sampling bihemispheric areas with intentional implantation of an SEEG electrode crossing the midline (SECM) for sampling the cortex on both sides of the interhemispheric fissure. METHODS: An analysis of 231 consecutive SEEG procedures over 8 years was used to identify instances of bihemispheric sampling by using the transmidline SEEG technique. RESULTS: The authors identified 53 SEEG cases, with a total of 126 electrodes that crossed the interhemispheric fissure; all were in the frontal lobes. Eighty-three electrodes targeted the cingulate gyrus (18 rostral, 43 anterior, and 22 middle), 31 targeted the posterior orbitofrontal region, 8 sampled the medial prefrontal cortex, and 4 targeted nodular heterotopia around the frontal horns. The ictal onset zone was localized to the frontal lobe in 16 cases. SECM isolated interictal and ictal activity in the contralateral hemisphere in 6 cases and independent bihemispheric seizure activity in 2 cases. No hemorrhagic or infectious complications were noted in any of these cases. CONCLUSIONS: Based on this extensive experience of bihemispheric sampling, the authors concluded that this technique is safe and effective. In this series, SECM showed contralateral interictal and/or ictal epileptiform activity in 8 (15%) cases, and 9 (16%) cases (with unilateral implantation) had sufficient data to discard contralateral involvement, contributing to support of the epileptogenic network. SECM may reduce the number of electrodes used to sample bilateral mesial frontal or orbitofrontal cortices, and such an approach may lower the risk of hemorrhage and costs.


Subject(s)
Electroencephalography , Epilepsy , Humans , Electroencephalography/methods , Stereotaxic Techniques , Epilepsy/surgery , Electrodes, Implanted , Seizures/surgery
19.
Sci Rep ; 12(1): 19430, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371527

ABSTRACT

Biomedical ontologies are widely used to harmonize heterogeneous data and integrate large volumes of clinical data from multiple sources. This study analyzed the utility of ontologies beyond their traditional roles, that is, in addressing a challenging and currently underserved field of feature engineering in machine learning workflows. Machine learning workflows are being increasingly used to analyze medical records with heterogeneous phenotypic, genotypic, and related medical terms to improve patient care. We performed a retrospective study using neuropathology reports from the German Neuropathology Reference Center for Epilepsy Surgery at Erlangen, Germany. This cohort included 312 patients who underwent epilepsy surgery and were labeled with one or more diagnoses, including dual pathology, hippocampal sclerosis, malformation of cortical dysplasia, tumor, encephalitis, and gliosis. We modeled the diagnosis terms together with their microscopy, immunohistochemistry, anatomy, etiologies, and imaging findings using the description logic-based Web Ontology Language (OWL) in the Epilepsy and Seizure Ontology (EpSO). Three tree-based machine learning models were used to classify the neuropathology reports into one or more diagnosis classes with and without ontology-based feature engineering. We used five-fold cross validation to avoid overfitting with a fixed number of repetitions while leaving out one subset of data for testing, and we used recall, balanced accuracy, and hamming loss as performance metrics for the multi-label classification task. The epilepsy ontology-based feature engineering approach improved the performance of all the three learning models with an improvement of 35.7%, 54.5%, and 33.3% in logistics regression, random forest, and gradient tree boosting models respectively. The run time performance of all three models improved significantly with ontology-based feature engineering with gradient tree boosting model showing a 93.8% reduction in the time required for training and testing of the model. Although, all three models showed an overall improved performance across the three-performance metrics using ontology-based feature engineering, the rate of improvement was not consistent across all input features. To analyze this variation in performance, we computed feature importance scores and found that microscopy had the highest importance score across the three models, followed by imaging, immunohistochemistry, and anatomy in a decreasing order of importance scores. This study showed that ontologies have an important role in feature engineering to make heterogeneous clinical data accessible to machine learning models and also improve the performance of machine learning models in multilabel multiclass classification tasks.


Subject(s)
Epilepsy , Machine Learning , Humans , Workflow , Retrospective Studies , Epilepsy/diagnosis , Seizures , Medical Records
20.
Front Big Data ; 5: 965715, 2022.
Article in English | MEDLINE | ID: mdl-36059922

ABSTRACT

Epilepsy affects ~2-3 million individuals in the United States, a third of whom have uncontrolled seizures. Sudden unexpected death in epilepsy (SUDEP) is a catastrophic and fatal complication of poorly controlled epilepsy and is the primary cause of mortality in such patients. Despite its huge public health impact, with a ~1/1,000 incidence rate in persons with epilepsy, it is an uncommon enough phenomenon to require multi-center efforts for well-powered studies. We developed the Multimodal SUDEP Data Resource (MSDR), a comprehensive system for sharing multimodal epilepsy data in the NIH funded Center for SUDEP Research. The MSDR aims at accelerating research to address critical questions about personalized risk assessment of SUDEP. We used a metadata-guided approach, with a set of common epilepsy-specific terms enforcing uniform semantic interpretation of data elements across three main components: (1) multi-site annotated datasets; (2) user interfaces for capturing, managing, and accessing data; and (3) computational approaches for the analysis of multimodal clinical data. We incorporated the process for managing dataset-specific data use agreements, evidence of Institutional Review Board review, and the corresponding access control in the MSDR web portal. The metadata-guided approach facilitates structural and semantic interoperability, ultimately leading to enhanced data reusability and scientific rigor. MSDR prospectively integrated and curated epilepsy patient data from seven institutions, and it currently contains data on 2,739 subjects and 10,685 multimodal clinical data files with different data formats. In total, 55 users registered in the current MSDR data repository, and 6 projects have been funded to apply MSDR in epilepsy research, including three R01 projects and three R21 projects.

SELECTION OF CITATIONS
SEARCH DETAIL
...