Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Braz J Microbiol ; 55(1): 571-586, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302737

ABSTRACT

The source area of the Yangtze River is located in the hinterland of the Qinghai-Tibet Plateau, which is known as the "Earth's third pole." It is the water conservation area and the natural barrier of the ecosystem of the Yangtze River basin. It is also the most sensitive area of the natural ecosystem, and the ecological environment is very fragile. Microorganisms play key roles in the biogeochemical processes of water. In this paper, the bacterioplankton communities in the source and upstream regions of the Yangtze River were studied based on 16S rRNA high-throughput sequencing, and their environmental influencing factors were further analyzed. Results showed that the upstream region had higher richness and diversity than the source region. The predominant bacterial phyla in the source and upstream regions were Proteobacteria, Firmicutes, and Actinobacteriota. The bacterial phyla associated with municipal pollution and opportunistic pathogen, such as Firmicutes and Actinobacteriota, were more abundant in the upstream. By contrast, distinct planktonic bacterial genera associated with mining pollution, such as Acidiphilium and Acidithiobacillus, were more abundant in the source region. The co-occurrence network showed that the interaction of bacterioplankton community is more frequent in the upstream. The bacterioplankton community compositions, richness, and functional profiles were affected by the spatial heterogeneity. Moreover, variation partitioning analysis further confirmed that the amount of variation in the source region independently explained by variables of altitude was the largest, followed by water nutrient. This paper revealed the spatial distribution of planktonic bacterial communities in the source and upstream regions of the Yangtze River and its correlation with environmental factors, providing information support for ensuring the health and safety of aquatic ecosystems in the Yangtze River Basin.


Subject(s)
Ecosystem , Rivers , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Aquatic Organisms , Plankton/genetics , Bacteria/genetics , Water , China
2.
Acta Cir Bras ; 38: e386223, 2023.
Article in English | MEDLINE | ID: mdl-38055397

ABSTRACT

PURPOSE: Over-activation of nuclear factor kappa B (NF-κB) was proven to be involved in the pathogenesis of preeclampsia. However, its regulation mechanism is not clear yet. This paper explored the role of WD repeat domain 5 (WDR5) in the development of late-onset preeclampsia and its relationship with NF-κB. METHODS: WDR5 expression was detected in normal placentas and placentas from late-onset preeclampsia patients. CCK-8 and colony formation assays were conducted to appraise the proliferative ability of trophoblast. Migration and invasion were observed by wound healing and transwell assays. The interaction between WDR5 and NF-κB inhibitor I-kappa-B-alpha (IkBa) was verified by Co-immunoprecipitation analysis. Immunofluorescence was used to analyze the activation of NF-κB. Finally, we tested the role of WDR5 using the mice late-onset preeclampsia model. RESULTS: WDR5 was highly expressed in the placentas of late-onset preeclampsia patients. WDR5 overexpression suppressed cell proliferation, migration, and invasion in trophoblast. WDR5 could interact with IkBa to activate NF-κB. Knockdown of NF-κB counteracted the anti-proliferative and anti-metastatic effects of WDR5 overexpression in trophoblast. In-vivo studies suggested that targeting WDR5 combated late-onset preeclampsia development. CONCLUSIONS: Our finding provides new insights into the role of WDR5 in late-onset preeclampsia development.


Subject(s)
NF-kappa B , Pre-Eclampsia , Pregnancy , Mice , Female , Animals , Humans , NF-kappa B/metabolism , Pre-Eclampsia/metabolism , WD40 Repeats , Placenta , Trophoblasts/metabolism , Cell Proliferation , Intracellular Signaling Peptides and Proteins/metabolism
3.
Acta cir. bras ; Acta cir. bras;38: e386223, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1527603

ABSTRACT

Purpose: Over-activation of nuclear factor kappa B (NF-κB) was proven to be involved in the pathogenesis of preeclampsia. However, its regulation mechanism is not clear yet. This paper explored the role of WD repeat domain 5 (WDR5) in the development of late-onset preeclampsia and its relationship with NF-κB. Methods: WDR5 expression was detected in normal placentas and placentas from late-onset preeclampsia patients. CCK-8 and colony formation assays were conducted to appraise the proliferative ability of trophoblast. Migration and invasion were observed by wound healing and transwell assays. The interaction between WDR5 and NF-κB inhibitor I-kappa-B-alpha (IkBa) was verified by Co-immunoprecipitation analysis. Immunofluorescence was used to analyze the activation of NF-κB. Finally, we tested the role of WDR5 using the mice late-onset preeclampsia model. Results: WDR5 was highly expressed in the placentas of late-onset preeclampsia patients. WDR5 overexpression suppressed cell proliferation, migration, and invasion in trophoblast. WDR5 could interact with IkBa to activate NF-κB. Knockdown of NF-κB counteracted the anti-proliferative and anti-metastatic effects of WDR5 overexpression in trophoblast. In-vivo studies suggested that targeting WDR5 combated late-onset preeclampsia development. Conclusions: Our finding provides new insights into the role of WDR5 in late-onset preeclampsia development.


Subject(s)
Pre-Eclampsia , Trophoblasts , NF-kappa B
4.
Respir Physiol Neurobiol ; 171(1): 46-53, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20117251

ABSTRACT

Central chemoreception, the detection of CO(2)/H(+) within the brain and the resultant effect on ventilation, was initially localized at two areas on the ventrolateral medulla, one rostral (rVLM-Mitchell's) the other caudal (cVLM-Loeschcke's), by surface application of acidic solutions in anesthetized animals. Focal dialysis of a high CO(2)/H(+) artificial cerebrospinal fluid (aCSF) that produced a milder local pH change in unanesthetized rats (like that with a approximately 6.6mm Hg increase in arterial P(CO2)) delineated putative chemoreceptor regions for the rVLM at the retrotrapezoid nucleus and the rostral medullary raphe that function predominantly in wakefulness and sleep, respectively. Here we ask if chemoreception in the cVLM can be detected by mild focal stimulation and if it functions in a state dependent manner. At responsive sites just beneath Loeschcke's area, ventilation was increased by, on average, 17% (P<0.01) only in wakefulness. These data support our hypothesis that central chemoreception is a distributed property with some sites functioning in a state dependent manner.


Subject(s)
Carbon Dioxide/pharmacology , Hydrogen/pharmacology , Pulmonary Ventilation/drug effects , Pulmonary Ventilation/physiology , Wakefulness/physiology , Analysis of Variance , Animals , Body Temperature/drug effects , Body Temperature/physiology , Carbon Dioxide/administration & dosage , Dialysis/methods , Electroencephalography/methods , Electromyography/methods , Hydrogen/administration & dosage , Male , Medulla Oblongata/drug effects , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Rats , Rats, Sprague-Dawley , Wakefulness/drug effects
5.
J Appl Physiol (1985) ; 105(1): 83-90, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18450988

ABSTRACT

Simultaneous inhibition of the retrotrapezoid nucleus (RTN) and raphe obscurus (ROb) decreased the systemic CO(2) response by 51%, an effect greater than inhibition of RTN (-24%) or ROb (0%) alone, suggesting that ROb modulates chemoreception by interaction with the RTN (19). We investigated this interaction further by simultaneous dialysis of artificial cerebrospinal fluid equilibrated with 25% CO(2) in two probes located in or adjacent to the RTN and ROb in conscious adult male rats. Ventilation was measured in a whole body plethysmograph at 30 degrees C. There were four groups (n = 5): 1) probes correctly placed in both RTN and ROb (RTN-ROb); 2) one probe correctly placed in RTN and one incorrectly placed in areas adjacent to ROb (RTN-peri-ROb); 3) one probe correctly placed in ROb and one probe incorrectly placed in areas adjacent to RTN (peri-RTN-ROb); and 4) neither probe correctly placed (peri-RTN-peri-ROb). Focal simultaneous acidification of RTN-ROb significantly increased ventilation (Ve) up to 22% compared with baseline, with significant increases in both breathing frequency and tidal volume. Focal acidification of RTN-peri-ROb increased Ve significantly by up to 15% compared with baseline. Focal acidification of ROb and peri-RTN had no significant effect. The simultaneous acidification of regions just outside the RTN and ROb actually decreased Ve by up to 11%. These results support a modulatory role for the ROb with respect to central chemoreception at the RTN.


Subject(s)
Carbon Dioxide/metabolism , Medulla Oblongata/physiology , Raphe Nuclei/physiology , Respiratory Mechanics/physiology , Animals , Body Temperature , Brain Stem/physiology , Chemoreceptor Cells/physiology , Dialysis , Electrodes , Electroencephalography , Electromyography , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL