Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Microbiome ; 12(1): 170, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252128

ABSTRACT

BACKGROUND: Clean energy hydrogen (H2) produced from abundant lignocellulose is an alternative to fossil energy. As an essential influencing factor, there is a lack of comparison between constant temperatures (35, 55 and 65 °C) and gradient heating temperature (35 to 65 °C) on the H2 production regulation potential from lignocellulose-rich straw via high-solid anaerobic digestion (HS-AD). More importantly, the microbial mechanism of temperature regulating H2 accumulation needs to be investigated. RESULTS: Constant 65 °C led to the lowest lignin residue (1.93%) and the maximum release of cellulose and hemicellulose, and the highest H2 production (26.01 mL/g VS). H2 production at 35 and 55 °C was only 14.56 and 24.13 mL/g VS, respectively. In order to further explore the potential of ultra-high temperature (65 °C), HS-AD was performed by gradient heating conditions (35 to 65 °C). However, compared to constant 65 °C, gradient heating conditions led to higher lignin residue (2.49%) and lower H2 production (13.53 mL/g VS) than gradient heating conditions (47.98%). In addition, metagenomic analysis showed the cellulose/hemicellulose hydrolyzing bacteria and genes (mainly Thermoclostridium, and xynA, xynB, abfA, bglB and xynD), H2-producing bacteria and related genes (mainly Thermoclostridium, and nifD, nifH and nifK), and microbial movement and metabolic functions were enriched at 65 °C. However, the enrichment of two-component systems under gradient heating conditions resulted in a lack of highly-enriched ultra-high-temperature cellulose/hemicellulose hydrolyzing genera and related genes but rather enriched H2 consumption genera and genes (mainly Acetivibrio, and hyaB and hyaA) resulting in a weaker H2 production. CONCLUSIONS: The lignin degradation process does not directly determine H2 accumulation, which was actually regulated by bacteria/genes contributing to H2 production/consumption. In addition, it is temperature that enhances the hydrolysis process of lignin rather than lignin-degrading enzymes, bacteria and genes by promoting microbial material transfer and metabolism. In terms of temperature, one of the key parameters of HS-AD for H2 production, we developed an important regulatory strategy, enriched the theoretical basis of temperature regulation for H2 production to further expanded the research horizon in this field. Video Abstract.


Subject(s)
Hydrogen , Lignin , Hydrogen/metabolism , Lignin/metabolism , Anaerobiosis , Hot Temperature , Cellulose/metabolism , Polysaccharides/metabolism , Metagenomics/methods , Temperature , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics
2.
Water Res ; 266: 122345, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39217640

ABSTRACT

The microalgal-bacterial granular sludge (MBGS) process, enhanced with sodium bicarbonate (NaHCO3), offers a sustainable alternative for wastewater treatment aiming for carbon neutrality. This study demonstrates that NaHCO3, which can be derived from the flue gases and alkaline textile wastewater, significantly enhances pollutant removal and biomass production. Optimal addition of NaHCO3 was found to achieve an inorganic-to-organic carbon ratio of 1.0 and a total carbon-to-nitrogen ratio of 5.0. Metagenomic analysis and structural equation modeling showed that NaHCO3 addition increased dissolved oxygen concentrations and pH levels, creating a more favorable environment for key microbial communities, including Proteobacteria, Chloroflexi, and Cyanobacteria. Confocal laser scanning microscopy further confirmed enhanced interactions between Cyanobacteria and Proteobacteria/Chloroflexi, facilitating the MBGS process. These microbes harbored functional genes (gap2, GLU, and ppk) critical for removing organics, nitrogen, and phosphorus. Carbon footprint analysis revealed significant reductions in CO2 emissions by the NaHCO3-added MBGS process in representative countries (China, Australia, Canada, Germany, and Morocco), compared to the conventional activated sludge process. These findings highlight the effectiveness of NaHCO3 in optimizing MBGS process, establishing it as a key strategy in achieving carbon-neutral wastewater treatment globally.

3.
Bioresour Technol ; 408: 131208, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098355

ABSTRACT

Immobilized microalgae biotechnologies can conserve water and space by low-carbon wastewater treatment and resource recovery in a recirculating aquaculture system (RAS). However, technical process parameters have been unoptimized considering the mutual interaction between factors. In this study, machine learning optimized the parameters of alginate-immobilized Chlorella vulgaris (C. vulgaris), that is, 474 µmol/(m2·s) of light intensity, 23 × 106 cells/mL for initial cell number, and 2.07 mm particle size. Importantly, under continuous illumination, the immobilized C. vulgaris and microalgal-bacterial consortium improved water purification and biomass reutilization. Transcriptomics of C. vulgaris showed enhanced nitrogen removal by increasing pyridine nucleotide and lipid accumulation via enhanced triacylglycerol synthesis. Symbiotic bacteria upregulated genes for nitrate reduction and organic matter degradation, which stimulated biomass accumulation through CO2 fixation and starch synthesis. The recoverable microalgae (1.94 g/L biomass, 47 % protein, 26.23 % lipids), struvite (64.79 % phosphorus), and alginate (79.52 %) every two weeks demonstrates a low-carbon resource recovery in RAS.


Subject(s)
Alginates , Aquaculture , Biomass , Carbon , Chlorella vulgaris , Machine Learning , Wastewater , Water Purification , Chlorella vulgaris/metabolism , Aquaculture/methods , Carbon/metabolism , Water Purification/methods , Alginates/chemistry , Microalgae/metabolism , Cells, Immobilized/metabolism , Nitrogen/metabolism
4.
Environ Res ; 262(Pt 1): 119856, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197485

ABSTRACT

Artificial biomanufacturing has been developed as a promising biotechnology for water pollution control. Effective bioimmobilization techniques are limited in application because of low productivity and the difficulty in achieving both mechanical strength and biocompatibility. Bioprinting technology, using biomaterials as bioink to enable the rapid on-demand production of bioactive structures, opens a new path for bioimmobilization. In this study, mimicking extracellular polysaccharide and protein of aerobic granular sludge (AGS), sodium alginate (SA) and silk fibroin methacryloyl (SilMA) were developed as the dual-component bioink with a suitable viscosity for bioprinting hydrogel. Interpenetrating network (IPN) hydrogel beads were manufactured using 1.5% (w/v) SA combined with 20% (w/v) SilMA through physical and covalent crosslinking, which exhibited excellent structural stability and bioactivity. The addition of SilMA provided a solution to the poor mechanical stability of SA-Ca hydrogels limited by Ca2+-Na+ ionic exchange. The unique structure of SilMA contributed to the reduction of hydrogel swelling as well as the prevention of SA loss. IPN hydrogels showed a swelling rate of less than 20% compared to the high swelling rate of more than 60% for SA hydrogels. On the other hand, SA controlled the hardening induced by excessive self-assembly of SilMA and improved mass transport in SilMA hydrogels. Compared to IPN hydrogels, SilMA hydrogels experienced a 15% volumetric shrinkage and exhibited a low water content of 92%. Sonication pretreatment of the dual-component bioink not only increased the intermolecular chain entanglement to form IPN, but also led to ß-sheet content in SiMA reaching 46%-48%, which resulted in the formation of stable IPN hydrogels dominated entirely by physical crosslinking. Satisfactory proliferation and viability were achieved for the encapsulated bacteria in IPN hydrogels (µmax 1.49-2.18 d-1). Further, the IPN biohydrogels could maintain structural stability as well as achieve pollutant removal for treating synthetic wastewater with high Na+ concentration of 300 mg/L. The novel SA/SilMA hydrogel bioprinting strategy established in this study offers a new direction for bioimmobilization in water pollution control and other environmental applications.

5.
Bioresour Technol ; 409: 131215, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102967

ABSTRACT

This study investigated the performance of microalgal-bacterial granular sludge (MBGS) in the restoration of Qingling Lake and Huangjia Lake, focusing on nitrogen removal under varying water quality conditions. Significant color changes in MBGS and differences in granule characteristics were observed, with Qingling Lake demonstrating superior removal efficiencies for ammonia nitrogen, nitrate nitrogen, and total nitrogen compared to Huangjia Lake. Stoichiometric analysis revealed that when the chemical oxygen demand (COD) and carbon-to-nitrogen (C/N) ratios were less than 20 mg/L and 20, respectively, assimilatory nitrate reduction was positively correlated with both, whereas denitrification was negatively correlated. Gene function analysis showed that Qingling Lake had a more active microbial community supporting efficient nitrogen metabolism. The findings highlighted the enormous potential of MBGS in lake restoration, demonstrating its ability to adapt to different COD concentrations and C/N ratios by altering its nitrogen removal pathways.


Subject(s)
Bacteria , Biological Oxygen Demand Analysis , Carbon , Lakes , Microalgae , Nitrogen , Sewage , Lakes/microbiology , Carbon/pharmacology , Microalgae/metabolism , Sewage/microbiology , Bacteria/metabolism , Bacteria/drug effects , Denitrification , Water Purification/methods , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
6.
Nat Commun ; 15(1): 5211, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890314

ABSTRACT

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.


Subject(s)
Chlamydomonas reinhardtii , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Thylakoids/metabolism , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochrome b Group/metabolism , Cytochrome b Group/genetics , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Light
7.
Bioresour Technol ; 402: 130816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723726

ABSTRACT

Current biological wastewater treatment processes usually have a drawback of insufficient nitrogen (N) removal, contributing to the ubiquitous eutrophication of aquatic ecosystems globally. To address such a challenging situation, this study explored an innovative microalgal-bacterial granular sludge-marimo (MBGS-MA) coupling process. The process removed 83.4 % of N with the effluent N concentration of 4.0 mg/L. With the growth of MBGS, there was a shift towards genes associated with nitrification and denitrification, and away from ammonia assimilation genes, revealing internal mechanism of the shift of N removal pathway. Contrarily, MA could use gaseous N2 with the N fixing genes in MA enriched, and the genes abundance related to assimilatory nitrate reduction were also raised under the mutualistic interactions between Proteobacteria and Cyanobacteria, which was beneficial to achieve efficient N removal. These findings may open a new horizon for developing innovative hybrid microalgal-bacterial processes aimed at high-efficiency N removal from wastewater.


Subject(s)
Microalgae , Nitrogen , Sewage , Sewage/microbiology , Nitrogen/metabolism , Microalgae/metabolism , Water Purification/methods , Bioreactors , Denitrification , Bacteria/metabolism , Bacteria/genetics , Wastewater/chemistry , Nitrification , Cyanobacteria/metabolism
8.
Sci Total Environ ; 929: 172545, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636868

ABSTRACT

Microalgal-bacterial symbioses are prevalent in aquatic ecosystems and play a pivotal role in carbon sequestration, significantly contributing to global carbon cycling. The understanding of the contribution of exopolysaccharides (EPSs), a crucial carbon-based component, to the structural integrity of microalgal-bacterial symbioses remains insufficiently elucidated. To address this gap, our study aims to enhance our comprehension of the composition and primary structure of EPSs within a specific type of granular microalgal-bacterial symbiosis named microalgal-bacterial granular sludge (MBGS). Our investigation reveals that the acidic EPSs characteristic of this symbiosis have molecular weights ranging from several hundred thousand to over one million Daltons, including components like glucopyranose, galactopyranose, mannose, and rhamnose. Our elucidation of the backbone linkage of a representative exopolysaccharide revealed a →3)-ß-D-Galp-(1→4)-ß-D-Glcp-(1→ glycosidic linkage. This linear structure closely resembles bacterial xanthan, while the branched chain structure bears similarities to algal EPSs. Our findings highlight the collaborative synthesis of acidic EPSs by both microalgae and bacteria, emphasizing their joint contribution in the production of macromolecules within microalgal-bacterial symbiosis. This collaborative synthesis underscores the intricate molecular interactions contributing to the stability and function of these symbiotic relationships.


Subject(s)
Microalgae , Polysaccharides , Symbiosis , Microalgae/physiology , Polysaccharides/metabolism , Bacteria/metabolism , Polysaccharides, Bacterial/metabolism
9.
Bioresour Technol ; 393: 130069, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000643

ABSTRACT

In this study, two arrested anaerobic digestion bioreactors, fed with food waste, operated under different hydraulic retention times (HRTs) exhibited similar total volatile fatty acid (VFA) yields (p = 0.09). 16S rRNA gene sequencing revealed distinct microbial structure (p = 0.02) at the two HRTs. However, between the two HRTs, there were no differences in potential (DNA) and extant (mRNA) functionality for the production of acetic (AA)-, propionic (PA)-, butyric (BA)- and valeric-acid (VA), as indicated by the metagenome and metatranscriptome data, respectively. The highest potential and extant functionality for PA production in the reactor microbiomes mirrored the highest abundance of PA in the reactor effluents. Meta-omics analysis of BA production indicated possible metabolite exchange across different community members. Notably, the basis for similar VFA production performance observed under the HRTs tested lies in the community-level redundancy in convergent acidification functions and pathways, rather than trends in community-level structure alone.


Subject(s)
Food Loss and Waste , Refuse Disposal , Anaerobiosis , Food , RNA, Ribosomal, 16S/genetics , Bioreactors , Fatty Acids, Volatile/metabolism , Methane
10.
J Environ Manage ; 348: 119194, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37832300

ABSTRACT

Even after pre-treatment, livestock and poultry wastewater still contain high concentrations of ammonia and residual antibiotics. These could be removed economically using the aerobic granular sludge (AGS) process with zero-valent iron (ZVI). The interaction of antibiotics and nitrogen in this process needs to be clarified and controlled, however, to achieve good removal performance. Otherwise, antibiotics might generate transformation products (TPs) with higher toxicity and lead to the emergence of antibiotic-resistant bacteria carrying antibiotic resistance genes (ARGs), which could cause persistent toxicity and the risk of disease transmission to the ecological environment. This study investigated the impact of ZVI on AGS for nitrogen and sulfamethoxazole (SMX) removal. The results show that AGS could maintain good ammonia removal performance and that the existence of SMX had a negative impact on ammonia oxidation activities. ZVI contributed to an increase in the abundance of nitrite oxidation bacteria, denitrifying bacteria and the functional genes of nitrogen removal. This led to better total nitrogen removal and a decrease in N2O emission. Accompanied by biological nitrogen transformation, SMX could be transformed into 14 TPs through five pathways. ZVI has the potential to enhance transformation pathways with TPs of lower ecotoxicity, thereby reducing the acute and chronic toxicity of the effluent. Unfortunately, ZVI might enhance the abundance of sul1, sul2, and sul3 in AGS, which increases the risk of sulfonamide antibiotic resistance. In AGS, Opitutaceae, Xanthomonas, Spartobacteria and Mesorhizobium were potential hosts for ARGs. This study provides theoretical references for the interaction of typical antibiotics and nitrogen in the biological treatment process of wastewater and bioremediation of natural water bodies.


Subject(s)
Anti-Bacterial Agents , Sulfamethoxazole , Anti-Bacterial Agents/pharmacology , Sewage , Wastewater , Iron , Nitrogen , Ammonia , Drug Resistance, Microbial/genetics , Bacteria/genetics
11.
J Environ Manage ; 345: 118816, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598492

ABSTRACT

As a green process, microalgal-bacterial granular sludge (MBGS) process shows talents in achieving pollutant removal, resource recovery and carbon neutralization. However, when it comes to application, the adequate mixing of MBGS and substrate should be adopted theoretically. Therefore, this study devoted to address the necessity of stirring for MBGS in municipal wastewater treatment. Outdoor performances showed that stirring significantly enhanced both of the photosynthetic efficiency and biomass productivity of MBGS with almost 2-fold increase as compared to non-stirred MBGS, while the average pore size and microalgae-to-bacteria ratio also increased. Consequently, stirring acted as a pivotal role in accelerating pollutants removal, with removals of organics (89.89% COD) and nutrients (99.22% NH4+-N, 92.15% PO43--P) reaching peak levels at 2 h and 6 h, respectively, while removals of organics (87.50% COD) and nutrients (86.11% NH4+-N, 86.76% PO43--P) removal peaked at 8 h for non-stirred MBGS. The improved granule characteristics and microbial compositions due to the stirring were found to be favorable for MBGS to adapting to the changeable weather. Based on the above results, the possible underlying mechanisms of stirring for improving MBGS were illustrated. Overall, stirring positively impacted the photosynthetic efficiency, biomass productivity, pollutant removal and microbial structure for MBGS. This study gains knowledge on stirred MBGS process under outdoor conditions for its future practical application.


Subject(s)
Microalgae , Sewage , Sewage/chemistry , Wastewater , Bacteria , Biomass , Nitrogen
12.
Environ Res ; 237(Pt 1): 116930, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37604224

ABSTRACT

17α-ethinylestradiol (EE2) has received increasing attention as an emerging and difficult-to-remove emerging contaminant in recent years. Ammonia-oxidizing bacteria (AOB) have been reported to be effective in EE2 removal, and ammonia monooxygenase (AMO) is considered as the primary enzyme for EE2 removal. However, the molecular mechanism underlying the transformation of EE2 by AOB and AMO is still unclear. This study investigated the molecular mechanism of EE2 degradation using a combination of experimental and computational simulation methods. The results revealed that ammonia nitrogen was essential for the co-metabolism of EE2 by AOB, and that NH3 bound with CuC (one active site of AMO) to induce a conformational change in AMO, allowing EE2 to bind with the other active site (CuB), and then EE2 underwent biological transformation. These results provide a theoretical basis and a novel research perspective on the removal of ammonia nitrogen and emerging contaminants (e.g., EE2) in wastewater treatment.

13.
Sci Total Environ ; 903: 166491, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37633391

ABSTRACT

Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.

14.
Chemosphere ; 336: 139235, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343397

ABSTRACT

Swine wastewater is highly polluted with complex and harmful substances that require effective treatment to minimize environmental damage. There are three commonly used biological technologies for treating swine wastewater: conventional biological technology (CBT), microbial electrochemical technology (MET), and microalgae technology (MT). However, there is a lack of comparison among these technologies and a lack of understanding of their unique advantages and efficient operation strategies. This review aims to compare and contrast the characteristics, influencing factors, improvement methods, and microbial mechanisms of each technology. CBT is cost-effective but has low resource recovery efficiency, while MET and MT have the highest potential for resource recovery. However, all three technologies are affected by various factors and toxic substances such as heavy metals and antibiotics. Improved methods include exogenous/endogenous enhancement, series reactor operation, algal-bacterial symbiosis system construction, etc. Though MET is limited by construction costs, CBT and MT have practical applications. While swine wastewater treatment processes have developed automatic control systems, the application need further promotion. Furthermore, key functional microorganisms involved in CBT's pollutant removal or transformation have been detected, as have related genes. The unique electroactive microbial cooperation mode and symbiotic mode of MET and MT were also revealed, respectively. Importantly, the future research should focus on broadening the scope and scale of engineering applications, preventing and controlling emerging pollutants, improving automated management level, focusing on microbial synergistic metabolism, enhancing resource recovery performance, and building a circular economy based on low-cost and resource utilization.


Subject(s)
Microalgae , Water Purification , Animals , Swine , Wastewater , Bacteria , Technology
15.
Chemosphere ; 333: 138904, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37182710

ABSTRACT

Aerobic granulation of nitrifying activated sludge could enhance the removal of 17α-ethinylestradiol (EE2) via abiotic nitration induced by reactive nitrogen species, cometabolism by ammonia-oxidizing bacteria and biodegradation by heterotrophic bacteria. Zero-valent iron (ZVI), a promising and low-cost material, has previously been applied to effectively enhance biological wastewater treatment. The impact and the effect mechanism of ZVI on nitrifying granular sludge (NGS) for EE2 removal was investigated in this study. The results showed that the addition of ZVI achieved better EE2 removal, though ZVI was not conducive to the accumulation of nitrite in NGS which reduced the abiotic transformation of EE2. Moreover, ZVI enriched heterotrophic denitrifying bacteria such as Arenimonas, thus changing the EE2 removal pathway and improving the degradation and mineralization of EE2. In addition, ZVI reduced the emission risk of the greenhouse gas N2O and strengthened the stability of the granules. Metagenomic analysis further revealed that the functional genes related to EE2 mineralization, nitrite oxidation, N2O reduction and quorum sensing in NGS were enriched with ZVI addition. This study provides meaningful guidance for ZVI application in the NGS process to achieve efficient and simultaneous removal of ammonia and emerging contaminants.


Subject(s)
Ammonia , Sewage , Ammonia/metabolism , Iron/metabolism , Ethinyl Estradiol/metabolism , Wastewater , Bacteria/genetics , Bacteria/metabolism , Bioreactors
16.
Water Res ; 236: 119960, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37054610

ABSTRACT

Microalgae-bacteria symbiotic systems were known to have great potential for simultaneous water purification and resource recovery, among them, microalgae-bacteria biofilm/granules have attracted much attention due to its excellent effluent quality and convenient biomass recovery. However, the effect of bacteria with attached-growth mode on microalgae, which has more significance for bioresource utilization, has been historically ignored. Thus, this study attempted to explore the responses of C. vulgaris to extracellular polymeric substances (EPS) extracted from aerobic granular sludge (AGS), for enhancing the understanding of microscopic mechanism of attached microalgae-bacteria symbiosis. Results showed that the performance of C. vulgaris was effectively boosted with AGS-EPS treatment at 12-16 mg TOC/L, highest biomass production (0.32±0.01 g/L), lipid accumulation (44.33±5.69%) and flocculation ability (20.83±0.21%) were achieved. These phenotypes were promoted associated with bioactive microbial metabolites in AGS-EPS (N-acyl-homoserine lactones, humic acid and tryptophan). Furthermore, the addition of CO2 triggered carbon flow into the storage of lipids in C. vulgaris, and the synergistic effect of AGS-EPS and CO2 for improving microalgal flocculation ability was disclosed. Transcriptomic analysis further revealed up-regulation of synthesis pathways for fatty acid and triacylglycerol that was triggered by AGS-EPS. And within the context of CO2 addition, AGS-EPS substantially upregulated the expression of aromatic protein encoding genes, which further enhanced the self-flocculation of C. vulgaris. These findings provide novel insights into the microscopic mechanism of microalgae-bacteria symbiosis, and bring new enlightenment to wastewater valorization and carbon-neutral operation of wastewater treatment plants based on the symbiotic biofilm/biogranules system.


Subject(s)
Chlorella vulgaris , Extracellular Polymeric Substance Matrix , Microalgae , Bacteria/metabolism , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Chlorella vulgaris/metabolism , Chlorella vulgaris/microbiology , Flocculation , Sewage/microbiology , Symbiosis
17.
Front Oncol ; 13: 1068469, 2023.
Article in English | MEDLINE | ID: mdl-36923425

ABSTRACT

Colorectal cancer is a common malignancy, and the incidence and mortality rates continue to rise. An important factor in the emergence of inflammation-induced colorectal carcinogenesis is elevated cyclooxygenase-2. Prostaglandin E2 (PGE2) over-production is frequently equated with cyclooxygenase-2 gene over-expression. PGE2 can be assessed by measuring the level of prostaglandin's main metabolite, PGE-M, in urine. Colorectal adenoma is a precancerous lesion that can lead to colorectal cancer. We conducted research to evaluate the association between urinary levels of the PGE-M and the risk of colorectal adenomas. In a western Chinese population, we identified 152 cases of adenoma and 152 controls patients without polyps. Adenoma cases were categorized into control, low-risk and high-risk groups. There was no significant change in PGE-M levels, between the control group and the low-risk adenoma group. In the high-risk group, the PGE-M levels were 23% higher than the control group. When compared to people with the lowest urine PGE-M levels (first quartile), people with greater urinary PGE-M levels had a higher chance of developing high-risk colorectal adenomas, with an adjusted odds ratio (95% CI) of 1.65 (0.76-3.57) in the fourth quartile group, (p= 0.013). We conclude urinary PGE-M is associated with the risk of developing high-risk adenomas. Urinary PGE-M level may be used as a non-invasive indicator for estimating cancer risk.

18.
Nature ; 615(7951): 349-357, 2023 03.
Article in English | MEDLINE | ID: mdl-36702157

ABSTRACT

Chloroplasts rely on the translocon complexes in the outer and inner envelope membranes (the TOC and TIC complexes, respectively) to import thousands of different nuclear-encoded proteins from the cytosol1-4. Although previous studies indicated that the TOC and TIC complexes may assemble into larger supercomplexes5-7, the overall architectures of the TOC-TIC supercomplexes and the mechanism of preprotein translocation are unclear. Here we report the cryo-electron microscopy structure of the TOC-TIC supercomplex from Chlamydomonas reinhardtii. The major subunits of the TOC complex (Toc75, Toc90 and Toc34) and TIC complex (Tic214, Tic20, Tic100 and Tic56), three chloroplast translocon-associated proteins (Ctap3, Ctap4 and Ctap5) and three newly identified small inner-membrane proteins (Simp1-3) have been located in the supercomplex. As the largest protein, Tic214 traverses the inner membrane, the intermembrane space and the outer membrane, connecting the TOC complex with the TIC proteins. An inositol hexaphosphate molecule is located at the Tic214-Toc90 interface and stabilizes their assembly. Four lipid molecules are located within or above an inner-membrane funnel formed by Tic214, Tic20, Simp1 and Ctap5. Multiple potential pathways found in the TOC-TIC supercomplex may support translocation of different substrate preproteins into chloroplasts.


Subject(s)
Chlamydomonas reinhardtii , Chloroplasts , Cryoelectron Microscopy , Multiprotein Complexes , Protein Transport , Chloroplasts/chemistry , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/ultrastructure , Protein Subunits/chemistry , Protein Subunits/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Phytic Acid/metabolism , Protein Stability , Substrate Specificity
19.
Sci Total Environ ; 858(Pt 3): 159929, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356784

ABSTRACT

Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.


Subject(s)
COVID-19 , Humans , Carbon
20.
Article in English | MEDLINE | ID: mdl-35886132

ABSTRACT

Global anthropogenic greenhouse gas emissions have exacerbated climate variation. Climate variation impacts the agricultural production and rural residents' income negatively, further widening the urban-rural income gap and harming the co-benefits. Narrowing the income gap has always been a global concern and an important part of China's rural revitalization strategy. However, little is known about whether digital inclusive finance can mitigate the negative impact of climate variation on rural residents' income growth in China. Using panel data from 31 provinces in China from 2011 to 2019 and a digital inclusive finance index developed by Peking University, together with historical temperature data, this study examined the impact of digital inclusive finance on Chinese rural residents' income growth in response to climate variation. It was found that digital inclusive finance could promote rural resident operating, wage, and transfer income growth. A heterogeneity analysis revealed that rural residents in central and western regions experienced larger digital inclusive finance facilitating effects on income growth than the eastern regions. Further analyses using the Spatial Dubin Model found that digital inclusive finance had a spatial spillover effect as it could significantly promote income growth in neighboring provinces. Although climate variation reduced rural residents' income and increased their risks, digital inclusive finance significantly mitigated this negative effect. Digital information infrastructure construction, financial risk prevention, digital financial knowledge, and e-commerce popularization were practical paths to optimizing inclusive finance development in rural areas and promoting poverty alleviation and rural revitalization to resist climate risks.


Subject(s)
Income , Rural Population , China , Climate , Humans , Poverty
SELECTION OF CITATIONS
SEARCH DETAIL