Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
1.
Clin Interv Aging ; 19: 1479-1491, 2024.
Article in English | MEDLINE | ID: mdl-39220855

ABSTRACT

Purpose: Our study aims to evaluate differences in muscle parameters of the quadriceps muscles in patients with knee osteoarthritis (KOA) in older adults. Methods: The study included 40 patients diagnosed with unilateral knee osteoarthritis in the KOA group (KG) and 40 asymptomatic elderly individuals in the control group (CG). Muscle ultrasonic mean echo intensity and shear modulus, as well as tone and stiffness of the rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) were analyzed. Additionally, clinical correlations were performed. Results: In the KG group, there were significant differences in echo intensity, shear modulus, and tone between the affected and unaffected sides for RF (p=0.003, 0.019, 0.014), while VM showed significant differences in shear modulus and tone (p=0.006, 0.002). Additionally, VL exhibited significant differences in echo intensity, shear modulus, and stiffness (p=0.007, 0.006, 0.010). Compared to the CG group, the KG group showed significant differences in echo intensity of the affected side RF (p=0.001). VM exhibited statistically significant differences in echo intensity and shear modulus (p < 0.001, p=0.008), while VL showed statistically significant differences in echo intensity, tone, and stiffness (p < 0.001, p=0.028, p < 0.001). The correlation results showed that patients with unilateral KOA, VM, and VL echo intensity were correlated with K-L grade (r = 0.443, p=0.004; r = 0.469, p=0.002). The tone of VL was correlated with VAS and WOMAC (r = 0.327, p=0.039; r = 0.344, p=0.030). Conclusion: The parameters of the quadriceps femoris muscle exhibit asymmetry between the affected and unaffected sides in patients with unilateral KOA, as well as a difference between the dominant side of healthy older individuals and the affected side of KOA.


Subject(s)
Osteoarthritis, Knee , Quadriceps Muscle , Ultrasonography , Humans , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiopathology , Male , Female , Aged , Biomechanical Phenomena , Middle Aged , Case-Control Studies
3.
Cancer Immunol Res ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283669

ABSTRACT

T cells expressing PD-1 in the peripheral blood (PB) of patients with tumors possess therapeutic potential; however, the immunosuppressive, PD1-triggered signaling pathway and limited proliferative capacity of PD-1+ T cells present challenges to their therapeutic application. Here, we observed no discernible distinction between PD-1+ and PD-1- T cells in terms of clonal overlap. However, CD8+PD-1+ T cells from PB and tumor tissues exhibited tighter clustering based on clone size. Single-cell RNA sequencing analysis showed that PD-1+ T cells from PB highly expressed cytotoxicity-related genes and were enriched for T cell activation-related pathways compared with PD-1- T cells from PB or tumor tissues. Consistent with this, PB-derived PD-1+ T cells exhibited strong cytotoxicity towards autologous tumor cells and tumor cell lines. To augment PD-1+ T-cell activity against solid tumors in vivo, we introduced a PD-1/CD28 fusion receptor combined with a CD19 chimeric antigen receptor (CAR) into PD-1+ T cells, which were then expanded in vitro. The modified PD-1+ T cells exhibited superior proliferation and antitumor abilities in vitro. In addition, four patients with cancer were infused with autologous PD-1/CD28-CD19-CAR PD-1+ T cells. None of these patients experienced severe side effects and one patient with melanoma achieved a complete response that was maintained for 6.7 months. The three other patients had stable disease. Collectively, these results suggested that cell therapy with modified PB-derived PD-1+ T cells is both safe and effective, and it may constitute a promising treatment strategy for cancer patients.

4.
Neuroimage ; : 120864, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39322096

ABSTRACT

The current magnetoencephalography (MEG) systems, which rely on cables for control and signal transmission, do not fully realize the potential of wearable optically pumped magnetometers (OPM). This study presents a significant advancement in wireless OPM-MEG by reducing magnetization in the electronics and developing a tailored wireless communication protocol. Our protocol effectively eliminates electromagnetic interference, particularly in the critical frequency bands of MEG signals, and accurately synchronizes the acquisition and stimulation channels with the host computer's clock. We have successfully achieved single-channel wireless OPM-MEG measurement and demonstrated its reliability by replicating three well-established experiments: The alpha rhythm, auditory evoked field, and steady-state visual evoked field in the human brain. Our prototype wireless OPM-MEG system not only streamlines the measurement process but also represents a major step forward in the development of wearable OPM-MEG applications in both neuroscience and clinical research.

5.
Front Plant Sci ; 15: 1460038, 2024.
Article in English | MEDLINE | ID: mdl-39319004

ABSTRACT

As one of the developed genetically modified (GM) maize varieties in China, CC-2 has demonstrated promising commercial prospects during demonstration planting. The establishment of detection methods is a technical prerequisite for effective supervision and regulation of CC-2 maize. In this study, we have developed an event-specific quantification method that targets the junction region between the exogenous gene and the 5' flanking genomic DNA (gDNA) of CC-2. The accuracy and precision of this method were evaluated across high, medium, and low levels of CC-2 maize content, revealing biases within ±25% and satisfactory precision data. Additionally, we determined the limits of quantification of the method to be 0.05% (equivalent to 20 copies) of the CC-2 maize. A collaborative trial further confirmed that our event-specific method for detecting CC-2 produces reliable, comparable, and reproducible results when applied to five different samples provided by various sources. Furthermore, we calculated the expanded uncertainty associated with determining the content level of CC-2 in these samples.

6.
Angew Chem Int Ed Engl ; : e202416569, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271458

ABSTRACT

The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this work, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities for up to 24 examples (up to 99% ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily enlarged to allow isolation of the atropisomeric products in 99% ee and 82% isolated yields. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivities and enzymatic activities. The current strategy expands the scope of IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.

7.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39275485

ABSTRACT

As people age, abnormal gait recognition becomes a critical problem in the field of healthcare. Currently, some algorithms can classify gaits with different pathologies, but they cannot guarantee high accuracy while keeping the model lightweight. To address these issues, this paper proposes a lightweight network (NSVGT-ICBAM-FACN) based on the new side-view gait template (NSVGT), improved convolutional block attention module (ICBAM), and transfer learning that fuses convolutional features containing high-level information and attention features containing semantic information of interest to achieve robust pathological gait recognition. The NSVGT contains different levels of information such as gait shape, gait dynamics, and energy distribution at different parts of the body, which integrates and compensates for the strengths and limitations of each feature, making gait characterization more robust. The ICBAM employs parallel concatenation and depthwise separable convolution (DSC). The former strengthens the interaction between features. The latter improves the efficiency of processing gait information. In the classification head, we choose to employ DSC instead of global average pooling. This method preserves the spatial information and learns the weights of different locations, which solves the problem that the corner points and center points in the feature map have the same weight. The classification accuracies for this paper's model on the self-constructed dataset and GAIT-IST dataset are 98.43% and 98.69%, which are 0.77% and 0.59% higher than that of the SOTA model, respectively. The experiments demonstrate that the method achieves good balance between lightweightness and performance.


Subject(s)
Algorithms , Gait , Humans , Gait/physiology , Neural Networks, Computer
8.
Angew Chem Int Ed Engl ; : e202411326, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252480

ABSTRACT

Although biocatalysis has garnered widespread attention in both industrial and academic realms, the enzymatic synthesis of chiral oxetanes remains an underdeveloped field. Halohydrin dehalogenases (HHDHs) are industrially relevant enzymes that have been engineered to accomplish the reversible transformation of epoxides. In our work, a biocatalytic platform was constructed for the stereoselective kinetic resolution of chiral oxetanes and formation of 1,3-disubstituted alcohols. HheC from Agrobacterium radiobacter AD1 was engineered to identify key variants capable of catalyzing the dehalogenation of γ-haloalcohols (via HheC M1-M3) and ring opening of oxetanes (via HheC M4-M5) to access both (R)- and (S)-configured products with high stereoselectivity and remarkable catalytic activity, yielding up to 49% with enantioselectivities exceeding 99% ee and E>200. The current strategy is broadly applicable as demonstrated by expansion of substrate scope to include up to 18 examples for dehalogenations and 16 examples for ring opening. Additionally, the functionalized products are versatile building blocks for pharmaceutical applications. To shed light on the molecular recognition mechanisms for the relevant variants, molecular dynamic (MD) simulations were performed. The current strategy expands the scope of HHDH-catalyzed chiral oxetane ring constructions, offering efficient access to both enantiomers of chiral oxetanes and 1,3-disubstituted alcohols.

9.
J Colloid Interface Sci ; 677(Pt B): 1045-1060, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39178668

ABSTRACT

Chemotherapy is commonly used to treat malignant tumors. However, conventional chemotherapeutic drugs often cannot distinguish between tumor and healthy cells, resulting in adverse effects and reduced therapeutic efficacy. Therefore, zigzag-shaped gear-occlude-guided cymbal-closing (ZGC) DNA nanotechnology was developed based on the mirror-symmetry principle to efficiently construct symmetric DNA polyhedra. This nanotechnology employed simple mixing steps for efficient sequence design and assembly. A targeting aptamer was installed at a user-defined position using an octahedron as a model structure. Chemotherapeutic drug-loaded polyhedral objects were subsequently delivered into tumor cells. Furthermore, anticancer drug-loaded DNA octahedra were intravenously injected into a HeLa tumor-bearing mouse model. Assembly efficiency was almost 100 %, with no residual building blocks identified. Moreover, this nanotechnology required a few DNA oligonucleotides, even for complex polyhedrons. Symmetric DNA polyhedrons retained their structural integrity for 24 h in complex biological environments, guaranteeing prolonged circulation without drug leakage in the bloodstream and promoting efficient accumulation in tumor tissues. In addition, DNA octahedra were cleared relatively slowly from tumor tissues. Similarly, tumor growth was significantly inhibited in vivo, and a therapeutic outcome comparable to that of conventional gene-chemo combination therapy was observed. Moreover, no systemic toxicity was detected. These findings indicate the potential application of ZGC DNA nanotechnology in precision medicine.

10.
J Agric Food Chem ; 72(32): 18214-18224, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39101349

ABSTRACT

Mogrosides are natural compounds highly valued in the food sector for their exceptional sweetness. Here, we report a novel O-glycosyltransferase (UGT74DD1) from Siraitia grosvenorii that catalyzes the conversion of mogrol to mogroside IIE. Site-directed mutagenesis yielded the UGT74DD1-W351A mutant, which exhibited the new capability to transform mogroside IIE into the valuable sweetener mogroside III, but with low catalytic activity. Subsequently, using structure-guided directed evolution with combinatorial active-site saturation testing, the superior mutant M6 (W351A/Q373 K/E49H/Q335W/S278C/D17F) were obtained, which showed a 46.1-fold increase in catalytic activity compared to UGT74DD1-W351A. Molecular dynamics simulations suggested that the enhanced activity and extended substrate profiles of M6 are due to its enlarged substrate-binding pocket and strengthened enzyme-substrate hydrogen bonding interactions. Overall, we redesigned UGT74DD1, yielding mutants that catalyze the conversion of mogrol into mogroside III. This study thus broadens the toolbox of UGTs capable of catalyzing the formation of valuable polyglycoside compounds.


Subject(s)
Glycosyltransferases , Sweetening Agents , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Sweetening Agents/chemistry , Sweetening Agents/metabolism , Cucurbitaceae/chemistry , Cucurbitaceae/enzymology , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Mutagenesis, Site-Directed , Plant Proteins/genetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Biocatalysis , Catalytic Domain , Protein Engineering , Substrate Specificity , Kinetics
11.
Sensors (Basel) ; 24(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39124111

ABSTRACT

Due to the increasing severity of aging populations in modern society, the accurate and timely identification of, and responses to, sudden abnormal behaviors of the elderly have become an urgent and important issue. In the current research on computer vision-based abnormal behavior recognition, most algorithms have shown poor generalization and recognition abilities in practical applications, as well as issues with recognizing single actions. To address these problems, an MSCS-DenseNet-LSTM model based on a multi-scale attention mechanism is proposed. This model integrates the MSCS (Multi-Scale Convolutional Structure) module into the initial convolutional layer of the DenseNet model to form a multi-scale convolution structure. It introduces the improved Inception X module into the Dense Block to form an Inception Dense structure, and gradually performs feature fusion through each Dense Block module. The CBAM attention mechanism module is added to the dual-layer LSTM to enhance the model's generalization ability while ensuring the accurate recognition of abnormal actions. Furthermore, to address the issue of single-action abnormal behavior datasets, the RGB image dataset RIDS (RGB image dataset) and the contour image dataset CIDS (contour image dataset) containing various abnormal behaviors were constructed. The experimental results validate that the proposed MSCS-DenseNet-LSTM model achieved an accuracy, sensitivity, and specificity of 98.80%, 98.75%, and 98.82% on the two datasets, and 98.30%, 98.28%, and 98.38%, respectively.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Pattern Recognition, Automated/methods , Behavior/physiology , Image Processing, Computer-Assisted/methods
12.
Nano Lett ; 24(35): 10899-10907, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39186254

ABSTRACT

The oxygen evolution reaction (OER) performance of ruthenium-based oxides strongly correlates with the electronic structures of Ru. However, the widely adopted monometal doping method unidirectionally regulates only the electronic structures, often failing to balance the activity and stability. Here, we propose an "elastic electron transfer" strategy to achieve bidirectional optimization of the electronic structures of Sr, Cr codoped RuO2 catalysts for acidic OER. The introduction of electron-withdrawing Sr intrinsically activates the Ru sites by increasing the oxidation state of Ru. Simultaneously, Cr acts as an electron buffer, donating electrons to Ru in the presence of Sr in the as-prepared catalysts and absorbing excess electrons from Sr leaching during the OER. Such a bidirectional regulation feature of Cr prevents overoxidation of Ru and maintains its high oxidation state during the OER. The optimal Ru3Cr1Sr0.175 catalyst exhibits a low overpotential (214 mV @ 10 mA cm-2) and excellent stability (over 300 h).

13.
J Synchrotron Radiat ; 31(Pt 5): 1146-1153, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39073994

ABSTRACT

Achieving diffraction-limited performance in fourth-generation synchrotron radiation sources demands monochromator crystals that can preserve the wavefront across an unprecedented extensive range. There is an urgent need for techniques of absolute crystal diffraction wavefront measurement. At the Beijing Synchrotron Radiation Facility (BSRF), a novel edge scan wavefront metrology technique has been developed. This technique employs a double-edge tracking method, making diffraction-limited level absolute crystal diffraction wavefront measurement a reality. The results demonstrate an equivalent diffraction surface slope error below 70 nrad (corresponding to a wavefront phase error of 4.57% λ) r.m.s. within a nearly 6 mm range for a flat crystal in the crystal surface coordinate. The double-edge structure contributes to exceptional measurement precision for slope error reproducibility, achieving levels below 15 nrad (phase error reproducibility < λ/100) even at a first-generation synchrotron radiation source. Currently, the measurement termed double-edge scan (DES) has already been regarded as a critical feedback mechanism in the fabrication of next-generation crystals.

14.
J Gene Med ; 26(7): e3718, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979822

ABSTRACT

BACKGROUND: Icariin (ICA) inhibits inflammatory response in various diseases, but the mechanism underlying ICA treating airway inflammation in asthma needs further understood. We aimed to predict and validate the potential targets of ICA against asthma-associated airway inflammation using network pharmacology and experiments. METHODS: The ovalbumin-induced asthma-associated airway inflammation mice model was established. The effects of ICA were evaluated by behavioral, airway hyperresponsiveness, lung pathological changes, inflammatory cell and cytokines counts. Next, the corresponding targets of ICA were mined via the SEA, CTD, HERB, PharmMapper, Symmap database and the literature. Pubmed-Gene and GeneCards databases were used to screen asthma and airway inflammation-related targets. The overlapping targets were used to build an interaction network, analyze gene ontology and enrich pathways. Subsequently, flow cytometry, quantitative real-time PCR and western blotting were employed for validation. RESULTS: ICA alleviated the airway inflammation of asthma; 402 targets of ICA, 5136 targets of asthma and 4531 targets of airway inflammation were screened; 216 overlapping targets were matched and predicted ICA possesses the potential to modulate asthmatic airway inflammation by macrophage activation/polarization. Additionally, ICA decreased M1 but elevated M2. Potential targets that were disrupted by asthma inflammation were restored by ICA treatment. CONCLUSIONS: ICA alleviates airway inflammation in asthma by inhibiting the M1 polarization of alveolar macrophages, which is related to metabolic reprogramming. Jun, Jak2, Syk, Tnf, Aldh2, Aldh9a1, Nos1, Nos2 and Nos3 represent potential targets of therapeutic intervention. The present study enhances understanding of the anti-airway inflammation effects of ICA, especially in asthma.


Subject(s)
Asthma , Disease Models, Animal , Flavonoids , Macrophage Activation , Macrophages, Alveolar , Network Pharmacology , Animals , Asthma/drug therapy , Asthma/metabolism , Mice , Flavonoids/pharmacology , Flavonoids/therapeutic use , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophage Activation/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Cytokines/metabolism , Ovalbumin , Lung/pathology , Lung/drug effects , Lung/metabolism , Female
15.
Front Bioeng Biotechnol ; 12: 1385986, 2024.
Article in English | MEDLINE | ID: mdl-38983600

ABSTRACT

Objective: 1. To assess the Inter-rater reliability and test-retest reliability of FPI-6 total score and individual scores in static foot posture evaluation among elderly female patients with knee osteoarthritis (KOA), aiming to establish the reliability of the FPI-6 scale. 2. To investigate the disparity between dominant and non-dominant quadriceps characteristics in elderly female KOA patients, as well as explore the correlation between quadriceps characteristics and abnormal foot posture, thereby offering novel insights for the prevention and treatment of KOA. Methods: The study enrolled a total of 80 lower legs of 40 participants (all female) with unilateral or bilateral KOA, who were assessed by two raters at three different time points. The inter-rater and test-retest reliability of the FPI-6 was evaluated using the intra-class correlation coefficient (ICC), while the absolute reliability of FPI-6 was examined using the standard error of measurement (SEM), minimum detectable change (MDC), and Bland-Altman analysis. The internal consistency of FPI-6 was assessed using Spearman's correlation coefficient. Additionally, MyotonPRO was employed to assess quadriceps muscle tone and stiffness in all participants, and the association between quadriceps muscle tone/stiffness and the total score of FPI-6 was analyzed. Result: Our study found excellent inter-rater and test-retest reliability (ICC values of 0.923 and 0.931, respectively) for the FPI-6 total score, as well as good to excellent reliability (ICC values ranging from 0.680 to 0.863 and 0.739-0.883) for individual items. The SEM and MDC values for the total score of FPI-6 among our study inter-rater were 0.78 and 2.15, respectively. and the SEM and MDC values for the test-retest total score of FPI-6 were found to be 0.76 and 2.11, respectively. Furthermore, the SEM and MDC values between inter-rater and test-retest across six individual items ranged from 0.30 to 0.56 and from 0.84 to 1.56. The Bland-Altman plots and respective 95% LOA showed no evidence of systematic bias. In terms of the mechanical properties of the quadriceps on both sides, the muscle tone and stiffness of rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) were significantly higher in the non-dominant leg compared to the dominant leg. Additionally, in the non-dominant leg, there was a significant positive correlation between the muscle tone and stiffness of VM, VL, RF and the total score of FPI-6. However, in the dominant leg, only VM's muscle tone and stiffness showed a significant positive correlation with the total score of FPI-6. Conclusion: The reliability of the FPI-6 total score and its six individual items was good to excellent. Our findings offer a straightforward and dependable approach for researchers to assess foot posture in elderly female patients with KOA. Furthermore, we observed significantly greater quadriceps tension and stiffness in the non-dominant leg compared to the dominant leg. The FPI-6 total score exhibited a significant correlation with changes in quadriceps muscle performance among KOA patients. These observations regarding the relationship between changes in quadriceps muscle performance and foot posture in elderly female KOA patients may provide novel insights for disease prevention, treatment, and rehabilitation.

16.
Biochem Biophys Res Commun ; 731: 150394, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39024978

ABSTRACT

Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.


Subject(s)
Aflatoxin B1 , Chromatin , Aflatoxin B1/toxicity , Animals , Chromatin/metabolism , Chromatin/drug effects , Cell Line , Swine , Transcription, Genetic/drug effects , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation/drug effects
17.
Biomater Sci ; 12(15): 3805-3825, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38967109

ABSTRACT

Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.


Subject(s)
Cardiovascular Diseases , Theranostic Nanomedicine , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/therapy , Cardiovascular Diseases/drug therapy , Animals , Polymers/chemistry , Stimuli Responsive Polymers/chemistry , Reactive Oxygen Species/metabolism , Drug Carriers/chemistry , Nanostructures/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration
18.
Sci Total Environ ; 947: 174480, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38972400

ABSTRACT

Reference evapotranspiration (ET0) estimation is crucial for efficient irrigation planning, optimized water management and ecosystem modeling, yet it presents significant challenges, particularly when meteorological data availability is limited. This study utilized remote sensing data of land surface temperature (LST), day of year, and latitude, and employed a machine learning approach (i.e., random forest) to develop an improved remote sensing ET0 model. The model performed excellently in 567 meteorological stations in China with an R2 of 0.97, RMSE of 0.40, MBE of 0.00, and MAPE of 0.11 compared to the FAO-PM ET0; it also performed well globally, yielding an average R2 of 0.97 and RMSE of 0.43 across 120 sites in mid-latitude (20°-50°) regions. This model demonstrates simplicity, accuracy, robust and generalization, holding great potential for widespread application, especially in the large-scale, high-resolution estimation of ET0. This study will contribute to advancements in water resources management, agricultural planning, and climate change studies.

19.
J Cardiothorac Surg ; 19(1): 356, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909234

ABSTRACT

OBJECTIVE: Systematic evaluation of the safety of del Nido cardioplegia compared to cold blood cardioplegia in adult cardiac surgery. METHODS: We systematically searched PubMed, EMbase, The Cochrane Library and ClinicalTrials.gov for randomized clinical trials (published by 14 January 2024) comparing del Nido cardioplegia to cold blood cardioplegia in adult. Our main endpoints were myocardial injury markers and clinical outcomes. We assessed pooled data by use of a random-effects model or a fixed-effects model. RESULTS: A total of 10 studies were identified, incorporating 889 patients who received del Nido cardioplegia and 907 patients who received cold blood cardioplegia. The meta-analysis results showed that compared with the cold blood cardioplegia, the del Nido cardioplegia had less volume of cardioplegia, higher rate of spontaneous rhythm recovery after cross clamp release, lower levels of postoperative cardiac troponin T and creatinine kinase-myocardial band, all of which were statistically significant. However, there was no statistically significant difference in postoperative troponin I and postoperative left ventricular ejection fraction. The clinical outcomes including mechanical ventilation time, intensive care unit stay time, hospital stay time, postoperative stroke, postoperative new-onset atrial fibrillation, postoperative heart failure requiring intra-aortic balloon pump mechanical circulation support, and in-hospital mortality of both are comparable. CONCLUSION: Existing evidence suggests that del Nido cardioplegia reduced volume of cardioplegia administration and attempts of defibrillation. The superior postoperative results in CTnT and CK-MB may provide a direction for further research on improvement of the composition of cardioplegia.


Subject(s)
Cardiac Surgical Procedures , Cardioplegic Solutions , Heart Arrest, Induced , Randomized Controlled Trials as Topic , Humans , Heart Arrest, Induced/methods , Cardiac Surgical Procedures/methods , Cardioplegic Solutions/therapeutic use , Adult , Potassium Chloride , Mannitol , Lidocaine , Solutions , Electrolytes , Magnesium Sulfate , Sodium Bicarbonate
20.
ACS Appl Mater Interfaces ; 16(27): 35232-35244, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38917334

ABSTRACT

The construction and modification of novel energetic frameworks to achieve an ideal balance between high energy density and good stability are a continuous pursuit for researchers. In this work, a fused [5,6,5]-tricyclic framework was utilized as the energetic host to encapsulate the oxidant molecules for the first time. A series of new pyridazine-based [5,6] and [5,6,5] fused polycyclic nitrogen-rich skeletons and their derivatives were designed and synthesized. Two strategies, amino oxidation and host-guest inclusion, were used to modify the skeleton in only one step. All compounds exhibit good comprehensive properties (Td (onset) > 200 °C, ρ > 1.85 g cm-3, Dv > 8400 m s-1, IS > 20 J, FS > 360 N). Benefiting from the pyridazine-based fused tricyclic structure with more hydrogen bonding units and larger conjugated systems, the first example of [5,6,5]-tricyclic host-guest energetic material triamino-9H-pyrazolo[3,4-d][1,2,4]triazolo[4,3-b]pyridazine-diperchloric acid (10), shows high decomposition temperature (Td (onset) = 336 °C), high density and heats of formation (ρ = 1.94 g cm-3, ΔHf = 733.4 kJ mol-1), high detonation performance (Dv = 8820 m s-1, P = 36.2 GPa), high specific impulse (Isp = 269 s), and low sensitivity (IS = 30 J, FS > 360 N). The comprehensive performance of 10 is superior to that of high-energy explosive RDX and heat-resistant explosives such as HNS and LLM-105. 10 has the potential to become a comprehensive advanced energetic material that simultaneously satisfies the requirements of high-energy and low-sensitivity explosives, heat-resistant explosives, and solid propellants. This work may give new insights into the construction and modification of a nitrogen-rich polycyclic framework and broaden the applications of fused polycyclic framework for the development of host-guest energetic materials.

SELECTION OF CITATIONS
SEARCH DETAIL