Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 204
1.
J Fungi (Basel) ; 10(5)2024 May 20.
Article En | MEDLINE | ID: mdl-38786720

The fermentation of a soil-derived fungus Acremonium sp. led to the isolation of thirteen ascochlorin congeners through integrated genomic and Global Natural Product Social (GNPS) molecular networking. Among the isolated compounds, we identified two unusual bicyclic types, acremochlorins O (1) and P (2), as well as two linear types, acremochlorin Q (3) and R (4). Compounds 1 and 2 contain an unusual benzopyran moiety and are diastereoisomers of each other, the first reported for the ascochlorins. Additionally, we elucidated the structure of 5, a 4-chloro-5-methylbenzene-1,3-diol with a linear farnesyl side chain, and confirmed the presence of eight known ascochlorin analogs (6-13). The structures were determined by the detailed interpretation of 1D and 2D NMR spectroscopy, MS, and ECD calculations. Compounds 3 and 9 showed potent antibacterial activity against Staphylococcus aureus and Bacillus cereus, with MIC values ranging from 2 to 16 µg/mL.

2.
J Org Chem ; 89(10): 6937-6950, 2024 May 17.
Article En | MEDLINE | ID: mdl-38691817

Domino Knoevenagel-cyclization reactions of N-arylcinnamylamines were carried out with active methylene reagents, which took place with five competing cyclization mechanisms: intramolecular hetero Diels-Alder reaction, stepwise polar [2 + 2] cycloaddition, styryl or aza-Diels-Alder reactions followed by rearomatization, and [1,5]-hydride shift-6-endo cyclization. In the stepwise aza-Diels-Alder reaction, the N-vinylpyridinium moiety acted as an azadiene, producing a condensed heterocycle with tetrahydroquinolizinium and tetrahydroquiniline subunits. Antiproliferative activity with low micromolar IC50 values was identified for some of the novel scaffolds.

3.
J Nat Prod ; 87(5): 1407-1415, 2024 May 24.
Article En | MEDLINE | ID: mdl-38662578

Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 µM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 µg/mL.


Alkaloids , Hydrazones , Microbial Sensitivity Tests , Staphylococcus aureus , Talaromyces , Talaromyces/chemistry , Hydrazones/pharmacology , Hydrazones/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Staphylococcus aureus/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Drug Screening Assays, Antitumor , Crystallography, X-Ray
4.
Adv Sci (Weinh) ; : e2310018, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687842

Dimeric indole-containing diketopiperazines (di-DKPs) are a diverse group of natural products produced through cytochrome P450-catalyzed C-C or C-N coupling reactions. The regio- and stereoselectivity of these reactions plays a significant role in the structural diversity of di-DKPs. Despite their pivotal role, the mechanisms governing the selectivity in fungi are not fully understood. Employing bioinformatics analysis and heterologous expression experiments, five undescribed P450 enzymes (AmiP450, AcrP450, AtP450, AcP450, and AtuP450) responsible for the regio- and stereoselective dimerization of diketopiperazines (DKPs) in fungi are identified. The function of these P450s is consistent with phylogenetic analysis, highlighting their dominant role in controlling the dimerization modes. Combinatorial biosynthesis-based pathway reconstitution of non-native gene clusters expands the chemical space of fungal di-DKPs and reveals that the regioselectivity is influenced by the substrate. Furthermore, multiple sequence alignment and molecular docking of these enzymes demonstrate a C-terminal variable region near the substrate tunnel entrance in AtuP450 that is crucial for its regioselectivity. These findings not only reveal the secret of fungal di-DKPs diversity but also deepen understanding of the mechanisms and catalytic specificity involved in P450-catalyzed dimerization reactions.

5.
Org Lett ; 26(16): 3349-3354, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38607994

UbiA-type prenyltransferases (PTases) are significant enzymes that lead to structurally diverse meroterpenoids. Herein, we report the identification and characterization of an undescribed UbiA-type PTase, FtaB, that is responsible for the farnesylation of indole-containing diketopiperazines (DKPs) through genome mining. Heterologous expression of the fta gene cluster and non-native pathways result in the production of a series of new C2-farnesylated DKPs. This study broadens the reaction scope of UbiA-type PTases and expands the chemical diversity of meroterpenoids.


Diketopiperazines , Dimethylallyltranstransferase , Prenylation , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/genetics , Diketopiperazines/chemistry , Diketopiperazines/metabolism , Molecular Structure , Multigene Family
7.
Nat Prod Res ; : 1-8, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38526199

One new indole diterpenoid, ascandinine T (1), and three known analogues (2-4) were isolated from an Antarctic sponge-derived fungus Aspergillus candidus HDN15-152. The structures, including absolute configurations, were established based on NMR, HRESIMS, and electronic circular dichroism (ECD) calculations. All isolated compounds were tested for antiviral and anticancer activity. Compound 4 displayed antiviral activity against influenza A virus (IAV) of A/PR/8/34(H1N1) strain with an IC50 value of 39.2 µM, while compound 2 showed cytotoxicity against NCI-H446, NCI-H446/EP and L-02 cells with IC50 values ranging from 9.77 to 13.91 µM.

8.
J Nat Prod ; 87(4): 1222-1229, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38447096

Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,ß-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.


Cytochalasins , Multigene Family , Cytochalasins/chemistry , Cytochalasins/pharmacology , Molecular Structure , Polyketides/chemistry , Polyketides/pharmacology , Antarctic Regions , Bacillus cereus , Evolution, Molecular
9.
ACS Chem Neurosci ; 15(7): 1378-1387, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38506367

Alpha-synuclein (α-Syn) is a key protein of Parkinson's disease (PD). Oligomers formed by misfolding and aggregation of α-Syn can cause many pathological phenomena and aggravate the development of PD. Therefore, sensitive and accurate detection of oligomers is essential to understanding the pathology of PD and beneficial to screening and developing new drugs against PD. Here, we demonstrated a simple and sensitive method to detect the early aggregation of α-Syn via Förster resonance energy transfer (FRET) technology. We performed systematic investigations of the FRET sensitizations, efficiencies, and donor-to-acceptor distances during α-Syn aggregation, which was proved to be more sensitive to reflect small distance changes in the early stage of α-Syn aggregation, especially for α-Syn oligomers. The FRET assays were also applied to study the influence of Ser129 phosphorylation (pS129) on the aggregation rate of α-Syn. Our results showed that pS129 modification promotes α-Syn aggregation and enhances the ability of preformed fibrils to induce monomer aggregation. pS129 also increased the cytotoxicity of α-Syn. These results are of great significance for a better understanding of the pathological mechanisms of PD and future PD drug development.


Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Fluorescence Resonance Energy Transfer
10.
Metab Eng ; 82: 147-156, 2024 Mar.
Article En | MEDLINE | ID: mdl-38382797

Cyclo-diphenylalanine (cFF) is a symmetrical aromatic diketopiperazine (DKP) found wide-spread in microbes, plants, and resulting food products. As different bioactivities continue being discovered and relevant food and pharmaceutical applications gradually emerge for cFF, there is a growing need for establishing convenient and efficient methods to access this type of compound. Here, we present a robust cFF production system which entailed stepwise engineering of the filamentous fungal strain Aspergillus nidulans A1145 as a heterologous expression host. We first established a preliminary cFF producing strain by introducing the heterologous nonribosomal peptide synthetase (NRPS) gene penP1 to A. nidulans A1145. Key metabolic pathways involving shikimate and aromatic amino acid biosynthetic support were then engineered through a combination of gene deletions of competitive pathway steps, over-expressing feedback-insensitive enzymes in phenylalanine biosynthesis, and introducing a phosphoketolase-based pathway, which diverted glycolytic flux toward the formation of erythrose 4-phosphate (E4P). Through the stepwise engineering of A. nidulans A1145 outlined above, involving both heterologous pathway addition and native pathway metabolic engineering, we were able to produce cFF with titers reaching 611 mg/L in shake flask culture and 2.5 g/L in bench-scale fed-batch bioreactor culture. Our study establishes a production platform for cFF biosynthesis and successfully demonstrates engineering of phenylalanine derived diketopiperazines in a filamentous fungal host.


Aspergillus nidulans , Dipeptides , Metabolic Engineering , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Bioreactors , Phenylalanine/genetics , Phenylalanine/metabolism
11.
Biomed Pharmacother ; 171: 116099, 2024 Feb.
Article En | MEDLINE | ID: mdl-38171244

Chronic myelogenous leukemia (CML) is characterized by the constitutive activation of BCR-ABL tyrosine kinase. Imatinib was approved for CML therapy, however, BCR-ABL-dependent drug resistance, especially BCR-ABL-T315I mutation, restricts its clinical application. In this study, we reported anthraquinone lactone AS1041, a synthesized derivative of marine natural compound Aspergiolide A, showed anti-leukemia effect in vitro and in vivo by promoting cell senescence. Mechanistic study revealed the pro-senescence effect of AS1041 was dependent on oxidative stress-induced DNA damage, and the resultant activation of P53/P21 and P16INK4a/Rb. Also, AS1041 promoted ubiquitin proteasome system (UPS)-mediated BCR-ABL degradation, which also contributed to AS1041-induced senescence. In vivo, AS1041-induced senescence promoted tumor growth inhibition. In summary, the in vitro and in vivo antitumor effect of AS1041 suggests it can serve as a pro-senescence agent for alternative antileukemia therapy and imatinib-resistant cancer therapy by enhancing cellular oxidative stress and BCR-ABL degradation.


Anthraquinones , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/pharmacology , Apoptosis , Cell Proliferation , Fusion Proteins, bcr-abl/metabolism , Oxidative Stress , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , DNA Damage , Protein Kinase Inhibitors/pharmacology
12.
J Antibiot (Tokyo) ; 77(4): 201-205, 2024 04.
Article En | MEDLINE | ID: mdl-38273126

Assisted by OSMAC strategy, one new p-terphenyl and two new α­pyrone derivates, namely nocarterphenyl I (1) and nocardiopyrone D-E (2-3), were obtained and characterized from the marine sediment-derived actinomycete Nocardiopsis sp. HDN154086. The structures of these compounds were determined on the basis of MS, NMR spectroscopic data and single-crystal X-ray diffraction. Compound 1 with a rare 2,2'-bithiazole structure among natural products showed promising activity against five bacteria with MIC values ranging from 0.8 to 1.6 µM and 3 exhibited notable antibacterial activity against MRSA compared the positive control ciprofloxacin.


Actinobacteria , Terphenyl Compounds , Actinobacteria/chemistry , Nocardiopsis , Pyrones/chemistry , Molecular Structure , Anti-Bacterial Agents/chemistry , Terphenyl Compounds/chemistry
13.
Org Lett ; 26(1): 225-230, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38147459

We report a novel enantioselective and regioselective [2 + 2] cycloaddition of allenoate and C,N-cyclic ketimine catalyzed by a quinidine derivative. The methodology enables the synthesis of fused tricyclic azetidines with a quaternary stereogenic center exhibiting high enantioselectivities. The broad range of substrates demonstrates the generality of the protocol, and the resulting functional products can be easily converted to a variety of valuable synthons. To elucidate the plausible reaction mechanism and how the catalyst affects absolute stereocontrol over the products, we conducted the corresponding density functional theory (DFT) calculations.

14.
Mar Drugs ; 21(12)2023 Dec 03.
Article En | MEDLINE | ID: mdl-38132949

Heterologous biosynthesis has become an effective means to activate fungal silent biosynthetic gene clusters (BGCs) and efficiently utilize fungal genetic resources. Herein, thirteen labdane diterpene derivatives, including five undescribed ones named talarobicins A-E (3-7), were discovered via heterologous expression of a silent BGC (labd) in Aspergillus nidulans. Their structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as electronic circular dichroism (ECD) calculations. These labdanes belong to four skeleton types, and talarobicin B (4) is the first 3,18-dinor-2,3:4,18-diseco-labdane diterpene with the cleavage of the C2-C3 bond in ring A and the decarboxylation at C-3 and C-18. Talarobicin B (4) represents the key intermediate in the biosynthesis of penioxalicin and compound 13. The combinatorial heterologous expression and feeding experiments revealed that the cytochrome P450 enzymes LabdC, LabdE, and LabdF were responsible for catalyzing various chemical reactions, such as oxidation, decarboxylation, and methylation. All of the compounds are noncytotoxic, and compounds 2 and 8 displayed inhibitory effects against methicillin-resistant coagulase-negative staphylococci (MRCNS) and Bacillus cereus.


Aspergillus nidulans , Diterpenes , Talaromyces , Talaromyces/metabolism , Diterpenes/chemistry , Cytochrome P-450 Enzyme System , Magnetic Resonance Spectroscopy , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Molecular Structure
15.
Mar Drugs ; 21(9)2023 Sep 13.
Article En | MEDLINE | ID: mdl-37755103

Coumarins, isocoumarins and their derivatives are polyketides abundant in fungal metabolites. Although they were first discovered over 50 years ago, the biosynthetic process is still not entirely understood. Herein, we report the activation of a silent nonreducing polyketide synthase that encodes a C7-methylated isocoumarin, similanpyrone B (1), in a marine-derived fungus Simplicillium lamellicola HDN13-430 by heterologous expression. Feeding studies revealed the host enzymes can change 1 into its hydroxylated derivatives pestapyrone A (2). Compounds 1 and 2 showed moderate radical scavenging activities with ED50 values of 67.4 µM and 104.2 µM. Our discovery fills the gap in the enzymatic elucidation of naturally occurring C7-methylated isocoumarin derivatives.


Hypocreales , Isocoumarins , Polyketide Synthases , Coumarins/pharmacology
16.
ISME J ; 17(11): 1979-1992, 2023 11.
Article En | MEDLINE | ID: mdl-37679430

Algae and bacteria have complex and intimate interactions in the ocean. Besides mutualism, bacteria have evolved a variety of molecular-based anti-algal strategies. However, limited by the unknown mechanism of synthesis and action of these molecules, these strategies and their global prevalence remain unknown. Here we identify a novel strategy through which a marine representative of the Gammaproteobacteria produced 3,3',5,5'-tetrabromo-2,2'-biphenyldiol (4-BP), that kills or inhibits diverse phytoplankton by inhibiting plastoquinone synthesis and its effect cascades to many other key metabolic processes of the algae. Through comparative genomic analysis between the 4-BP-producing bacterium and its algicidally inactive mutant, combined with gene function verification, we identified the gene cluster responsible for 4-BP synthesis, which contains genes encoding chorismate lyase, flavin-dependent halogenase and cytochrome P450. We demonstrated that in near in situ simulated algal blooming seawater, even low concentrations of 4-BP can cause changes in overall phytoplankton community structure with a decline in dinoflagellates and diatoms. Further analyses of the gene sequences from the Tara Oceans expeditions and 2750 whole genome sequences confirmed the ubiquitous presence of 4-BP synthetic genes in diverse bacterial members in the global ocean, suggesting that it is a bacterial tool potentially widely used in global oceans to mediate bacteria-algae antagonistic relationships.


Bacteria , Plastoquinone , Plastoquinone/metabolism , Plastoquinone/pharmacology , Bacteria/genetics , Bacteria/metabolism , Oceans and Seas , Seawater/microbiology , Phytoplankton/metabolism
17.
Life Sci ; 330: 121998, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37536615

AIMS: Novel antimycin alkaloid antimycin A2c (AE) was isolated from the culture of a marine derived Streptomyces sp. THS-55. We elucidated its chemical structure by extensive spectra and clarified the specific mechanism in HPV infected-cervical cancer. MATERIALS AND METHODS: Colony formation assay, cell cycle analysis, hoechst 33342 staining assay, et.al were used to detect the inhibitory effect of AE on cervical cancer cells. Meanwhile, flow cytometry, western blotting, immunoprecipitation, RNA interference and molecular docking were used to analyze the mechanism of AE. KEY FINDINGS: AE exhibited potent cytotoxicity in vitro against HPV-transformed cervical cancer HeLa cell line. AE inhibited the proliferation, arrested cell cycle distribution, and triggered caspase dependent apoptosis in HeLa cells. Further studies revealed AE-induced apoptosis is mediated by the degradation of E6/E7 oncoproteins. Molecular mechanic investigation showed that AE degraded the levels of E6/E7 oncoproteins through reactive oxygen (ROS)-mediated ubiquitin-dependent proteasome system activation, and the increased ROS generation was due to the disruption of the mitochondrial function. SIGNIFICANCE: This present work revealed that this novel marine derived antimycin alkaloid could target the mitochondria and subsequently degrade HPV E6/E7 oncoproteins, and have potential application in the design and development of lead compound for cervical cancer cells, as well as the development for tool compounds to dissect E6/E7 functions.


Antineoplastic Agents , Oncogene Proteins, Viral , Papillomavirus Infections , Streptomyces , Uterine Cervical Neoplasms , Female , Humans , HeLa Cells , Uterine Cervical Neoplasms/genetics , Streptomyces/metabolism , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Mitochondria/metabolism
18.
Org Lett ; 25(33): 6172-6177, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37578221

Allylic alkylations are valuable in the construction of versatile carbon-carbon bonds, which are mostly catalyzed by noble transition metals with additional waste byproduct generation. Here, we present the first organophosphine-catalyzed allylic alkylation of (hetero)aryl alkynes with various carbo-nucleophiles. The methodology is highly atom economical and compatible with a wide substrate scope (more than 38 examples). Moreover, the reaction could be easily scaled up, and deuterium labeling experiments have been conducted to elucidate the plausible mechanism. Finally, the protocol has been utilized to achieve the concise total synthesis of natural product (±)-esermethole.

19.
J Biol Chem ; 299(8): 104990, 2023 08.
Article En | MEDLINE | ID: mdl-37392850

Cycloartenyl ferulate (CF) is abundant in brown rice with multiple biologic functions. It has been reported to possess antitumor activity; however, the related mechanism of action of CF has not been clarified. Herein, we unexpectedly uncover the immunological regulation effects of CF and its molecular mechanism. We discovered that CF directly enhanced the killing capacity of natural killer (NK) cells for various cancer cells in vitro. In vivo, CF also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma dependent on NK cells. In addition, CF promoted anticancer efficacy of the anti-PD1 antibody with improvement of tumor immune microenvironment. Mechanistically, we first unveiled that CF acted on the canonical JAK1/2-STAT1 signaling pathway to enhance the immunity of the NK cells by selectively binding to interferon γ receptor 1. Collectively, our results indicate that CF is a promising immunoregulation agent worthy of attention in clinical application in the future. Due to broad biological significance of interferon γ, our findings also provide a capability to understand the diverse functions of CF.


Coumaric Acids , Killer Cells, Natural , Neoplasms , Receptors, Interferon , Animals , Mice , Interferon-gamma/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Neoplasms/immunology , Tumor Microenvironment , Coumaric Acids/pharmacology , Receptors, Interferon/immunology , Interferon gamma Receptor
20.
Eur J Med Chem ; 258: 115615, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37413878

Development and design of anti-influenza drugs with novel mechanisms is of great significance to combat the ongoing threat of influenza A virus (IAV). Hemagglutinin (HA) is regarded as a potential target for the therapy of IAV. Our previous research led to the discovery of penindolone (PND), a new diclavatol indole adduct, as an HA targeting leading compound exhibited anti-IAV activity. To enhance the bioactivity and understand the structure-activity relationships (SARs), 65 PND derivatives were designed and synthesized, and the anti-IAV activities as well as the HA targeting effects were systematically investigated in this study. Among them, compound 5g possessed high affinity to HA and was more effective than PND in terms of inhibiting HA-mediated membrane fusion. Compound 5g may act on the trypsin cleavage site of HA to exhibit a strong inhibition on membrane fusion. In addition, oral administration of 5g can significantly reduce the pulmonary virus titer, attenuate the weight loss, and improve the survival of IAV-infected mice, superior to the effects of PND. These findings suggest that the HA inhibitor 5g has potential to be developed into a novel broad-spectrum anti-IAV agent in the future.


Influenza A virus , Influenza, Human , Animals , Humans , Mice , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins/pharmacology , Membrane Fusion
...