Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Plants (Basel) ; 13(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732485

Estimating and monitoring chlorophyll content is a critical step in crop spectral image analysis. The quick, non-destructive assessment of chlorophyll content in rice leaves can optimize nitrogen fertilization, benefit the environment and economy, and improve rice production management and quality. In this research, spectral analysis of rice leaves is performed using hyperspectral and fluorescence spectroscopy for the detection of chlorophyll content in rice leaves. This study generated ninety experimental spectral datasets by collecting rice leaf samples from a farm in Sichuan Province, China. By implementing a feature extraction algorithm, this study compresses redundant spectral bands and subsequently constructs machine learning models to reveal latent correlations among the extracted features. The prediction capabilities of six feature extraction methods and four machine learning algorithms in two types of spectral data are examined, and an accurate method of predicting chlorophyll concentration in rice leaves was devised. The IVSO-IVISSA (Iteratively Variable Subset Optimization-Interval Variable Iterative Space Shrinkage Approach) quadratic feature combination approach, based on fluorescence spectrum data, has the best prediction performance among the CNN+LSTM (Convolutional Neural Network Long Short-Term Memory) algorithms, with corresponding RMSE-Train (Root Mean Squared Error), RMSE-Test, and RPD (Ratio of standard deviation of the validation set to standard error of prediction) indexes of 0.26, 0.29, and 2.64, respectively. We demonstrated in this study that hyperspectral and fluorescence spectroscopy, when analyzed with feature extraction and machine learning methods, provide a new avenue for rapid and non-destructive crop health monitoring, which is critical to the advancement of smart and precision agriculture.

2.
Bioact Mater ; 30: 98-115, 2023 Dec.
Article En | MEDLINE | ID: mdl-37560200

Peripheral nerve injuries may result in severe long-gap interruptions that are challenging to repair. Autografting is the gold standard surgical approach for repairing long-gap nerve injuries but can result in prominent donor-site complications. Instead, imitating the native neural microarchitecture using synthetic conduits is expected to offer an alternative strategy for improving nerve regeneration. Here, we designed nerve conduits composed of high-resolution anisotropic microfiber grid-cordes with randomly organized nanofiber sheaths to interrogate the positive effects of these biomimetic structures on peripheral nerve regeneration. Anisotropic microfiber-grids demonstrated the capacity to directionally guide Schwann cells and neurites. Nanofiber sheaths conveyed adequate elasticity and permeability, whilst exhibiting a barrier function against the infiltration of fibroblasts. We then used the composite nerve conduits bridge 30-mm long sciatic nerve defects in canine models. At 12 months post-implant, the morphometric and histological recovery, gait recovery, electrophysiological function, and degree of muscle atrophy were assessed. The newly regenerated nerve tissue that formed within the composite nerve conduits showed restored neurological functions that were superior compared to sheaths-only scaffolds and Neurolac nerve conduit controls. Our findings demonstrate the feasibility of using synthetic biophysical cues to effectively bridge long-gap peripheral nerve injuries and indicates the promising clinical application prospects of biomimetic composite nerve conduits.

3.
Animals (Basel) ; 12(9)2022 May 04.
Article En | MEDLINE | ID: mdl-35565603

The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world's first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm's performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.

4.
Water Sci Technol ; 85(9): 2503-2524, 2022 May.
Article En | MEDLINE | ID: mdl-35576250

Mathematical modelling is an indispensable tool to support water resource recovery facility (WRRF) operators and engineers with the ambition of creating a truly circular economy and assuring a sustainable future. Despite the successful application of mechanistic models in the water sector, they show some important limitations and do not fully profit from the increasing digitalisation of systems and processes. Recent advances in data-driven methods have provided options for harnessing the power of Industry 4.0, but they are often limited by the lack of interpretability and extrapolation capabilities. Hybrid modelling (HM) combines these two modelling paradigms and aims to leverage both the rapidly increasing volumes of data collected, as well as the continued pursuit of greater process understanding. Despite the potential of HM in a sector that is undergoing a significant digital and cultural transformation, the application of hybrid models remains vague. This article presents an overview of HM methodologies applied to WRRFs and aims to stimulate the wider adoption and development of HM. We also highlight challenges and research needs for HM design and architecture, good modelling practice, data assurance, and software compatibility. HM is a paradigm for WRRF modelling to transition towards a more resource-efficient, resilient, and sustainable future.


Water Purification , Water Resources , Industry , Wastewater , Water
5.
Water Sci Technol ; 85(9): 2722-2736, 2022 May.
Article En | MEDLINE | ID: mdl-35576264

Modelling, automation, and control are widely used for water resource recovery facility (WRRF) optimization. An influent generator (IG) is a model, aiming to provide the flowrate and pollutant concentration dynamics at the inlet of a WRRF for a range of modelling applications. In this study, a new data-driven IG model is proposed, only using routine data and weather information, and without need for any additional data collection. The model is constructed by an artificial neural network (ANN) and completed with a multivariate regression to generate time series for certain pollutants. The model is able to generate flowrate and quality data (TSS, COD, and nutrients) at different time scales and resolutions (daily or hourly), depending on various user objectives. The model performance is analyzed by a series of statistical criteria. It is shown that the model can generate a very reliable dataset for different model applications.


Waste Disposal, Fluid , Water Resources , Neural Networks, Computer , Waste Disposal, Fluid/methods , Wastewater , Water Quality , Weather
6.
Water Sci Technol ; 85(5): 1444-1453, 2022 Mar.
Article En | MEDLINE | ID: mdl-35290224

Nowadays, modelling, automation and control are widely used for Water Resource Recovery Facilities (WRRF) upgrading and optimization. Influent generator (IG) models are used to provide relevant input time series for dynamic WRRF simulations used in these applications. Current IG models found in literature are calibrated on the basis of a single performance criterion, such as the mean percentage error or the root mean square error. This results in the IG being adequate on average but with a lack of representativeness of, for instance, the observed temporal variability of the dataset. However, adequately capturing influent variability may be important for certain types of WRRF optimization, e.g., reaction to peak loads, control system performance evaluation, etc. Therefore, in this study, a data-driven IG model is developed based on the long short-term memory (LSTM) recurrent neural network and is optimized by a multi-objective genetic algorithm for both mean percentage error and variability. Hence, the influent generator model is able to generate a time series with a probability distribution that better represents reality, thus giving a better influent description for WRRF design and operation. To further increase the variability of the generated time series and in this way approximate the true variability better, the model is extended with a random walk process.


Neural Networks, Computer , Water Resources , Automation , Time Factors
...