Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
3.
Adv Atmos Sci ; 40(6): 963-974, 2023.
Article in English | MEDLINE | ID: mdl-36643611

ABSTRACT

Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth's energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth's climate system. In 2022, the world's oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum. According to IAP/CAS data, the 0-2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ (1 Zetta Joules = 1021 Joules); and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins (the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the "salty gets saltier-fresh gets fresher" pattern, also reached its highest level on record in 2022, implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Niña event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.

4.
Mol Ther ; 31(6): 1756-1774, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36461633

ABSTRACT

Super-enhancer (SE) plays a vital role in the determination of cell identity and fate. Up-regulated expression of coding genes is frequently associated with SE. However, the transcription dysregulation driven by SE, from the viewpoint of long non-coding RNA (lncRNA), remains unclear. Here, SE-associated lncRNAs in HCC are comprehensively outlined for the first time. This study integrally screens and identifies several novel SE-associated lncRNAs that are highly abundant and sensitive to JQ1. Especially, HSAL3 is identified as an uncharacterized SE-driven oncogenic lncRNA, which is activated by transcription factors HCFC1 and HSF1 via its super-enhancer. HSAL3 interference negatively regulates NOTCH signaling, implying the potential mechanism of its tumor-promoting role. The expression of HSAL3 is increased in HCC samples, and higher HSAL3 expression indicates an inferior overall survival of HCC patients. Furthermore, siHSAL3 loaded nanoparticles exert anti-tumor effect on HCC in vitro and in vivo. In conclusion, this is the first comprehensive survey of SE-associated lncRNAs in HCC. HSAL3 is a novel SE-driven oncogenic lncRNA, and siHSAL3 loaded nanoparticles are therapeutic candidates for HCC. This work sheds lights on the merit of anchoring SE-driven oncogenic lncRNAs for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics
5.
Nat Prod Res ; 37(22): 3826-3831, 2023.
Article in English | MEDLINE | ID: mdl-36434777

ABSTRACT

Protostane-type triterpenoids are antifibrotic nature components with unique structures in Alismatis Rhizoma. However, the underlying mechanisms of them against liver fibrosis are not well illustrated. The present study aims to study the targets and mechanisms of Alismatis Rhizoma triterpenes responsible for their antifibrotic effects by network pharmacology, molecular docking, and luciferase assay. As a result, six molecular targets responsible for the antifibrotic effects of alisols against liver fibrosis were uncovered by network pharmacology, among which the activation of farnesoid X receptor (FXR/NR1H4) was highlighted and further confirmed by molecular docking and luciferase assay. Our present study provides a scientific basis for treating liver fibrosis by using Alismatis Rhizoma, especially via the FXR activation effects of alisols.

6.
Arch Med Sci ; 18(6): 1582-1595, 2022.
Article in English | MEDLINE | ID: mdl-36457956

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC) is a common malignant tumour of the digestive system, which is a threat to public health. The purpose of this study was to investigate the featured genes and pathways of HCC from a bioinformatics database, and verify their correlation with diagnosis and prognosis of HCC. Material and methods: We downloaded the gene expression profile on HCC from the Gene Expression Omnibus (GEO), and software R was used to identify differentially expressed lncRNA (DEL). The target genes of the lncRNA were further predicted by using a cluster database and molecular interaction database. Subsequently, a combined interaction network of target genes was constructed using the Cytoscape platform with preliminary verification at the level of different databases, cell lines, and tissues. Finally, we explored the effectiveness of TUG1 and its target genes on the diagnosis and prognosis of HCC by univariate Cox analysis and survival analysis. Results: A total of four DELs were identified and the most remarkably up-regulated lncRNA was TUG1, which included 12 high-confidence target genes. Moreover, we found that the expression changes of TUG1 and its target genes in different databases, cell lines, and liver cancer tissues were consistent with the prediction. The high expression of TUG1 and its target genes could significantly predict the shorter survival time of HCC patients, among which NCAPG, MCM6, PIGC, PEA15, and RACGAP1 have significant diagnostic value for HCC (AUC > 0.9). Conclusions: This study provides a starting point for the screening of therapeutically relevant targets in HCC. Further experiment should be conducted to verify our findings.

7.
Adv Sci (Weinh) ; : e2204711, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307901

ABSTRACT

Superenhancers drive abnormal gene expression in tumors and promote malignancy. However, the relationship between superenhancer-associated long noncoding RNA (lncRNA) and abnormal metabolism is unknown. This study identifies a novel lncRNA, fatty acid synthesis-related lncRNA (FASRL), whose expression is driven by upstream stimulatory factor 1 (USF1) through its superenhancer. FASRL promotes hepatocellular carcinoma (HCC) cell proliferation in vitro and in vivo. Furthermore, FASRL binds to acetyl-CoA carboxylase 1 (ACACA), a fatty acid synthesis rate-limiting enzyme, increasing fatty acid synthesis via the fatty acid metabolism pathway. Moreover, the expression of FASRL, USF1, and ACACA is increased, and their high expression indicates a worse prognosis in HCC patients. In summary, USF1 drives FASRL transcription via a superenhancer. FASRL binding to ACACA increases fatty acid synthesis and lipid accumulation to mechanistically exacerbate HCC. FASRL may serve as a novel prognostic marker and treatment target in HCC.

8.
Cancers (Basel) ; 14(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077725

ABSTRACT

Pneumonia accounts for a significant cause of morbidity and mortality in multiple myeloma (MM) patients. It has been previously shown that intestinal Klebsiella pneumonia (K. pneumonia) enriches in MM and promotes MM progression. However, what role the altered gut microbiota plays in MM with pneumonia remains unknown. Here, we show that intestinal K. pneumonia is significantly enriched in MM with pneumonia. This enriched intestinal K. pneumonia links to the incidence of pneumonia in MM, and intestinal colonization of K. pneumonia contributes to pneumonia in a 5TGM1 MM mice model. Further targeted metabolomic assays reveal the elevated level of glutamine, which is consistently increased with the enrichment of K. pneumonia in MM mice and patients, is synthesized by K. pneumonia, and leads to the elevated secretion of TNF-α in the lung normal fibroblast cells for the higher incidence of pneumonia. Inhibiting glutamine synthesis by establishing glnA-mutated K. pneumonia alleviates the incidence of pneumonia in the 5TGM1 MM mice model. Overall, our work proposes that intestinal K. pneumonia indirectly contributes to pneumonia in MM by synthesizing glutamine. Altogether, we unveil a gut-lung axis in MM with pneumonia and establish a novel mechanism and a possible intervention strategy for MM with pneumonia.

9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(2): 153-164, 2022 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-35545405

ABSTRACT

OBJECTIVES: Liver cancer is the sixth most common malignant tumor in the world. Hepatocellular carcinoma (HCC) accounts for 85%-90% of all patients with liver cancer. It possesses the characteristics of insidious onset, rapid progression, early recurrence, easy drug resistance, and poor prognosis. NIMA related kinase 2 (NEK2) is a cell cycle regulating kinases, which regulates cell cycle in mitosis. Cellular senescence is a complex heterogeneous process, and is a stable form of cell cycle arrest that limits the proliferative potential of cells. This study aims to investigate the relationship between the expression level of NEK2 and the senescence in hepatoma cells, and to explore the effect of NEK2 expression on hepatoma cell senescence and the underlying molecular mechanism. METHODS: A total of 581 senescence-relevant genes were obtained from the GenAge website. The gene expression data of tumor tissues of 370 HCC patients were downloaded from the Cancer Genome Atlas database. The co-expression of NEK2 and aging-related genes was analyzed by R-package. KEGG was used to analyze the significant gene enrichment pathway of differentially expressed genes in NEK2 overexpression HEK293. The stable transfected cell lines with overexpression and knockdown of NEK2 were constructed in hepatoma cell line SMMC-7721 and HepG2, and senescence-associated ß-galactosidase (SA-ß-gal) staining was used to detect senescence, the cell proliferation was detected by CCK-8 method and clone formation experiment, the cell cycle was analyzed by flow cytometry, and the expression of proteins related to p53/p21, p16/Rb, and phosphatase and tensin homolog deleted on chromosome ten (PTEN)/Akt signal transduction pathway was detected by Western blotting. RESULTS: There were 320 senescence related genes co-expressed with NEK2. KEGG analysis showed that the senescence signaling pathway was significantly enriched in HEK293 cells with overexpression of NEK2.Compared with SMMC-7721 or HepG2 without knockdown of NEK2, the senescent cells of SMMC-7721 and HepG2 with knockdown of NEK2 were increased, cell proliferation and clone formation were decreased significantly, the percentage of cells in G0/G1 phase was increased, the expression levels of phospho-Akt (p-Akt) and phospho-Rb (p-Rb) protein were decreased significantly, and the expression level of p16 protein was increased significantly (all P<0.05). Compared with SMMC-7721 or HepG2 transfected with blank plasmid, the senescent cells of SMMC-7721 and HepG2 overexpressing NEK2 were decreased, the cell proliferation and clone formation were increased significantly, the percentage of cells in G0/G1 phase were decreased, the expression levels of p-Akt and p-Rb protein were increased significantly, and the expression level of p16 protein was decreased significantly (all P<0.05). CONCLUSIONS: NEK2 may mediate the anti-aging effect of hepatoma cells through p16/Rb and PTEN/Akt signal transduction pathways, which provides a new theoretical basis for NEK2 to promote the progress of liver cancer and a new idea for the targeting treatment for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , NIMA-Related Kinases , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Cellular Senescence/genetics , HEK293 Cells , Humans , Liver Neoplasms/pathology , NIMA-Related Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism
10.
Oncogene ; 41(19): 2696-2705, 2022 05.
Article in English | MEDLINE | ID: mdl-35388171

ABSTRACT

Extrachromosomal circular DNA (eccDNA) elements are circular DNA molecules that are derived from but are independent of chromosomal DNA. EccDNA is emerging as a rising star because of its ubiquitous existence in cancers and its crucial role in oncogene amplification and tumor progression. In the present study, whole-genome sequencing (WGS) data of cancer samples were downloaded from public repositories. Afterwards, eccDNAs were identified from WGS data via bioinformatic analyses. To leverage database coverage, eccDNAs were also collected by manual curation of literatures. Gene expression and clinical data were downloaded from TCGA and CCLE and then used to investigate the roles of eccDNAs in cancers. Finally, the first integrated database of eccDNAs, eccDNAdb, was developed. eccDNAdb currently includes 1270 eccDNAs, which were identified in 480 samples (of 42 cancers) after analyzing a total number of 3395 tumor samples (of 57 cancers) including patient tissues, patient-derived xenografts, and cancer cell lines. A total number of 54,901 eccDNA genes were annotated and included in the database as well. With the integration of gene expression, clinical information and chromatin accessibility data, eccDNAdb enables users to easily determine the biological function and clinical relevance of eccDNAs in human cancers. In conclusion, eccDNAdb is freely accessible at http://www.eccdnadb.org . To our knowledge, eccDNAdb is the first database in the eccDNA research field. It is expected to provide insight for novel cancer therapies.


Subject(s)
DNA , Neoplasms , Chromosomes , Cytoplasm , DNA/genetics , DNA, Circular/genetics , Humans , Neoplasms/genetics
11.
Cell Oncol (Dordr) ; 44(3): 643-659, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33646559

ABSTRACT

PURPOSE: Bone marrow stromal cells (BMSCs) have been implicated in multiple myeloma (MM) progression. However, the underlying mechanisms remain largely elusive. Therefore, we aimed to explore key factors in BMSCs that contribute to MM development. METHODS: RNA-sequencing was used to perform gene expression profiling in BMSCs. Enzyme-linked immunosorbent assays (ELISAs) were performed to determine the concentrations of PGE2 and TNFα in sera and conditioned media (CM). Western blotting, qRT-PCR and IHC were used to examine the expression of cyclooxygenase 2 (COX2) in BMSCs and to analyze the regulation of TNFα by COX2. Cell growth and adhesion assays were employed to explore the function of COX2 in vitro. A 5T33MMvt-KaLwRij mouse model was used to study the effects of COX2 inhibition in vivo. RESULTS: COX2 was found to be upregulated in MM patient-derived BMSCs and to play a critical role in BMSC-induced MM cell proliferation and adhesion. Administration of PGE2 to CM derived from BMSCs promoted MM cell proliferation and adhesion. Conversely, inhibition of COX2 in BMSCs greatly compromised BMSC-induced MM cell proliferation and adhesion. PCR array-based analysis of inflammatory cytokines indicated that COX2 upregulates the expression of TNFα. Subsequent rescue assays showed that an anti-TNFα monoclonal antibody could antagonize COX2-mediated MM cell proliferation and adhesion. Administration of NS398, a specific COX2 inhibitor, inhibited in vivo tumor growth and improved the survival of 5TMM mice. CONCLUSIONS: Our results indicate that COX2 contributes to BMSC-induced MM proliferation and adhesion by increasing the secretion of PGE2 and TNFα. Targeting COX2 in BMSCs may serve as a potential therapeutic approach of treating MM.


Subject(s)
Cyclooxygenase 2/metabolism , Mesenchymal Stem Cells/metabolism , Multiple Myeloma/pathology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Adhesion/physiology , Cell Proliferation/physiology , Humans , Mice , Tumor Cells, Cultured
12.
Microbiome ; 8(1): 74, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32466801

ABSTRACT

BACKGROUND: Gut microbiome alterations are closely related to human health and linked to a variety of diseases. Although great efforts have been made to understand the risk factors for multiple myeloma (MM), little is known about the role of the gut microbiome and alterations of its metabolic functions in the development of MM. RESULTS: Here, in a cohort of newly diagnosed patients with MM and healthy controls (HCs), significant differences in metagenomic composition were discovered, for the first time, with higher bacterial diversity in MM. Specifically, nitrogen-recycling bacteria such as Klebsiella and Streptococcus were significantly enriched in MM. Also, the bacteria enriched in MM were significantly correlated with the host metabolome, suggesting strong metabolic interactions between microbes and the host. In addition, the MM-enriched bacteria likely result from the regulation of urea nitrogen accumulated during MM progression. Furthermore, by performing fecal microbiota transplantation (FMT) into 5TGM1 mice, we proposed a mechanistic explanation for the interaction between MM-enriched bacteria and MM progression via recycling urea nitrogen. Further experiments validated that Klebsiella pneumoniae promoted MM progression via de novo synthesis of glutamine in mice and that the mice fed with glutamine-deficient diet exhibited slower MM progression. CONCLUSIONS: Overall, our findings unveil a novel function of the altered gut microbiome in accelerating the malignant progression of MM and open new avenues for novel treatment strategies via manipulation of the intestinal microbiota of MM patients. Video abstract.


Subject(s)
Biodiversity , Gastrointestinal Microbiome , Host Microbial Interactions , Multiple Myeloma , Animals , Bacteria/genetics , China , Disease Progression , Fecal Microbiota Transplantation , Female , Gastrointestinal Microbiome/genetics , Glutamine/metabolism , Humans , Klebsiella/physiology , Metagenome , Mice , Multiple Myeloma/microbiology , Multiple Myeloma/therapy , Streptococcus/metabolism
13.
J Breast Cancer ; 23(1): 20-35, 2020 02.
Article in English | MEDLINE | ID: mdl-32140267

ABSTRACT

PURPOSE: C-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor that is overexpressed in many cancers. CtBP1 transcriptionally represses a broad array of tumor suppressors, which promotes cancer cell proliferation, migration, invasion, and resistance to apoptosis. Recent studies have demonstrated that CtBP1 is a potential target for cancer therapy. This study was designed to screen for compounds that potentially target CtBP1. METHODS: Using a structure-based virtual screening for CtBP1 inhibitors, we found protocatechuic aldehyde (PA), a natural compound found in the root of a traditional Chinese herb, Salvia miltiorrhiza, that directly binds to CtBP1. Microscale thermophoresis assay was performed to determine whether PA and CtBP1 directly bind to each other. Further, clustered regularly interspaced short palindromic repeats associated Cas9 nuclease-mediated CtBP1 knockout in breast cancer cells was used to validate the CtBP1 targeting specificity of PA. RESULTS: Functional studies showed that PA repressed the proliferation and migration of breast cancer cells. Furthermore, PA elevated the expression of the downstream targets of CtBP1, p21 and E-cadherin, and decreased CtBP1 binding affinity for the promoter regions of p21 and E-cadherin in breast cancer cells. However, PA did not affect the expression of p21 and E-cadherin in the CtBP1 knockout breast cancer cells. In addition, the CtBP1 knockout breast cancer cells showed resistance to PA-induced repression of proliferation and migration. CONCLUSION: Our findings demonstrated that PA directly bound to CtBP1 and inhibited the growth and migration of breast cancer cells through CtBP1 inhibition. Structural modifications of PA are further required to enhance its binding affinity and selectivity for CtBP1.

14.
Br J Haematol ; 190(1): 52-66, 2020 07.
Article in English | MEDLINE | ID: mdl-32037523

ABSTRACT

The serine synthesis pathway (SSP) is active in multiple cancers. Previous study has shown that bortezomib (BTZ) resistance is associated with an increase in the SSP in multiple myeloma (MM) cells; however, the underlying mechanisms of SSP-induced BTZ resistance remain unclear. In this study, we found that phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in the SSP, was significantly elevated in CD138+ cells derived from patients with relapsed MM. Moreover, high PHGDH conferred inferior survival in MM. We also found that overexpression of PHDGH in MM cells led to increased cell growth, tumour formation, and resistance to BTZ in vitro and in vivo, while inhibition of PHGDH by short hairpin RNA or NCT-503, a specific inhibitor of PHGDH, inhibited cell growth and BTZ resistance in MM cells. Subsequent mechanistic studies demonstrated PHGDH decreased reactive oxygen species (ROS) through increasing reduced glutathione (GSH) synthesis, thereby promoting cell growth and BTZ resistance in MM cells. Furthermore, adding GSH to PHGDH silenced MM cells reversed S phase arrest and BTZ-induced cell death. These findings support a mechanism in which PHGDH promotes proliferation and BTZ resistance through increasing GSH synthesis in MM cells. Therefore, targeting PHGDH is a promising strategy for MM therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Glutathione/metabolism , Multiple Myeloma/drug therapy , Phosphoglycerate Dehydrogenase/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Mice , Multiple Myeloma/physiopathology
15.
Mol Oncol ; 14(4): 763-778, 2020 04.
Article in English | MEDLINE | ID: mdl-31955515

ABSTRACT

NEK2 is associated with drug resistance in multiple cancers. Our previous studies indicated that high NEK2 confers inferior survival in multiple myeloma (MM); thus, a better understanding of the mechanisms by which NEK2 induces drug resistance in MM is required. In this study, we discovered that NEK2 enhances MM cell autophagy, and a combination of autophagy inhibitor chloroquine (CQ) and chemotherapeutic bortezomib (BTZ) significantly prevents NEK2-induced drug resistance in MM cells. Interestingly, NEK2 was found to bind and stabilize Beclin-1 protein but did not affect its mRNA expression and phosphorylation. Moreover, autophagy enhanced by NEK2 was significantly prevented by knockdown of Beclin-1 in MM cells, suggesting that Beclin-1 mediates NEK2-induced autophagy. Further studies demonstrated that Beclin-1 ubiquitination is decreased through NEK2 interaction with USP7. Importantly, knockdown of Beclin-1 sensitized NEK2-overexpressing MM cells to BTZ in vitro and in vivo. In conclusion, we identify a novel mechanism whereby autophagy is activated by the complex of NEK2/USP7/Beclin-1 in MM cells. Targeting the autophagy signaling pathway may provide a promising therapeutic strategy to overcome NEK2-induced drug resistance in MM.


Subject(s)
Antineoplastic Agents/pharmacology , Beclin-1/metabolism , Bortezomib/pharmacology , Drug Resistance, Neoplasm , Multiple Myeloma/drug therapy , NIMA-Related Kinases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Bortezomib/therapeutic use , Cell Line, Tumor , Humans , Mice , Multiple Myeloma/metabolism , Protein Stability/drug effects
16.
Int J Med Sci ; 16(6): 800-812, 2019.
Article in English | MEDLINE | ID: mdl-31337953

ABSTRACT

Cervical cancer is a common malignant tumour of the female reproductive system that seriously threatens the health of women. The aims of this study were to identify key genes and pathways and to illuminate new molecular mechanisms underlying cervical cancer. Altogether, 1829 DEGs were identified, including 794 significantly down-regulated DEGs and 1035 significantly up-regulated DEGs. GO analysis suggested that the up-regulated DEGs were mainly enriched in mitotic cell cycle processes, including DNA replication, organelle fission, chromosome segregation and cell cycle phase transition, and that the down-regulated DEGs were primarily enriched in development and differentiation processes, such as tissue development, epidermis development, skin development, keratinocyte differentiation, epidermal cell differentiation and epithelial cell differentiation. KEGG pathway analysis showed that the DEGs were significantly enriched in cell cycle, DNA replication, the p53 signalling pathway, pathways in cancer and oocyte meiosis. The top 9 hub genes with a high degree of connectivity (over 72 in the PPI network) were down-regulated TSPO, CCND1, and FOS and up-regulated CDK1, TOP2A, CCNB1, PCNA, BIRC5 and MAD2L1. Module analysis indicated that the top 3 modules were significantly enriched in mitotic cell cycle, DNA replication and regulation of cell cycle (P < 0.01). The heat map based on TCGA database preliminarily demonstrated the expression change of the key genes in cervical cancer. GSEA results were basically coincident with the front enrichment analysis results. By comprehensive analysis, we confirmed that cell cycle was a key biological process and a critical driver in cervical cancer. In conclusion, this study identified DEGs and screened the key genes and pathways closely related to cervical cancer by bioinformatics analysis, simultaneously deepening our understanding of the molecular mechanisms underlying the occurrence and progression of cervical cancer. These results might hold promise for finding potential therapeutic targets of cervical cancer.


Subject(s)
Carcinogenesis/genetics , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms/genetics , Computational Biology , Datasets as Topic , Down-Regulation , Female , Gene Expression Profiling , Humans , Protein Interaction Mapping , Protein Interaction Maps/genetics , Signal Transduction/genetics , Transcriptome/genetics , Up-Regulation
17.
Cancer Res ; 79(3): 572-584, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30482773

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most dominant causes of neoplasm-related deaths worldwide. In this study, we identify and characterize HCCL5, a novel cytoplasmic long noncoding RNA (lncRNA), as a crucial oncogene in HCC. HCCL5 promoted cell growth, G1-S transition, invasion, and metastasis while inhibiting apoptosis of HCC cells both in vitro and in vivo. Moreover, HCCL5 was upregulated in TGF-ß1-induced classical epithelial-to-mesenchymal transition (EMT) models, and this lncRNA in turn accelerated the EMT phenotype by upregulating the expression of transcription factors Snail, Slug, ZEB1, and Twist1. HCCL5 was transcriptionally driven by ZEB1 via a super-enhancer and was significantly and frequently overexpressed in human HCC tissues, correlating with worse overall survival of patients with HCC. Together, this study characterizes HCCL5 as a super-enhancer-driven lncRNA promoting HCC cell viability, migration, and EMT. Our data also suggest that HCCL5 may serve as a novel prognostic biomarker and therapeutic target in HCC. SIGNIFICANCE: These findings identify the lncRNA HCCL5 as a super-enhancer-driven oncogenic factor that promotes the malignancy of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , RNA, Untranslated/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hep G2 Cells , Heterografts , Humans , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , RNA, Untranslated/metabolism , Transcriptional Activation , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Up-Regulation , Zinc Finger E-box-Binding Homeobox 1/metabolism
18.
Can J Gastroenterol Hepatol ; 2018: 8410195, 2018.
Article in English | MEDLINE | ID: mdl-30410873

ABSTRACT

Some long noncoding RNAs (lncRNAs) display aberrantly high or low expression in hepatocellular carcinoma (HCC) and have the potential to serve as diagnostic biomarkers. Here, we accomplished a meta-analysis based on current studies to assess the diagnostic value of lncRNAs in HCC. Eligible literatures were systematically selected from PubMed, Web of Science, and Embase (up to January 20, 2018) according to defined inclusion and exclusion criteria. QUADAS scale was applied to the quality assessment of the included studies. Statistical analysis was performed through bivariate random-effects models based on R software. Publication bias was evaluated by funnel plot and Begg's and Egger's tests. 16 articles containing 2,268 cancer patients and 2,574 controls were selected for the final meta-analysis. Random effect model was used for the meta-analysis due to significant between-study heterogeneity. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were 0.87(0.838-0.897), 0.829(0.794-0.86), 23.085(20.575-25.901), 4.533(4.239-4.847), and 0.176(0.166-0.186), respectively. Summary receiver operating characteristic curve (SROC) was conducted to estimate the diagnostic accuracy of lncRNAs in HCC with the area under curve (AUC) of 0.915. Subgroups analysis showed that lncRNA profiling, sample size, specimen types, and ethnicity might be the sources of heterogeneity. No publication bias existed according to funnel plot symmetry and Begg's (P = 0.187) and Egger's (P = 0.477) tests. In conclusion, lncRNAs can serve as potential diagnostic biomarkers of HCC with high sensitivity and specificity. In addition, lncRNAs panel from serum and plasma has a relatively high diagnostic value for HCC patients from Asia.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , RNA, Long Noncoding/blood , Area Under Curve , Asian People/genetics , Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/genetics , Humans , Likelihood Functions , Liver Neoplasms/genetics , Odds Ratio , ROC Curve , Sensitivity and Specificity
19.
J Cancer ; 9(14): 2549-2558, 2018.
Article in English | MEDLINE | ID: mdl-30026854

ABSTRACT

Hepatocellular carcinoma (HCC) accounting for roughly 90% of all primary liver neoplasms is the sixth most frequent neoplasm and the second prominent reason of tumor fatality worldwide. As regulators of diverse biological processes, long non-coding RNAs (lncRNAs) are involved in onset and development of neoplasms. With the continuous booming of well-featured lncRNAs in HCC from 2016 to now, we reviewed the newly-presented comprehension about the relationship between lncRNAs and HCC in this study. To be specific, we summarized the overview function and study tools of lncRNAs, elaborated the roles of lncRNAs in HCC, and sketched the molecule mechanisms of lncRNAs in HCC. In addition, the application of lncRNAs serving as biomarkers in early diagnosis and outcome prediction of HCC patients was highlighted.

20.
Int J Oncol ; 53(3): 1138-1148, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29956730

ABSTRACT

Resistance to radiotherapy and chemotherapy currently represents one of the major reasons for therapeutic failure in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying resistance to chemotherapy in NPC remain unclear. In this study, cell counting assay, cell cycle assay and senescence associated ß-galactosidase activity were performed to evaluate cell growth, proliferation and senescence, respectively. We found that the aberrant expression of cyclooxygenase-2 (COX-2) was associated with a poor outcome and recurrance in patients with NPC. In NPC cells, COX-2 overexpression increased cell proliferation, inhibited cellular senescence and resulted in chemoresistance, while the knockdown of COX-2 reduced cell proliferation, promoted cellular senescence and overcame chemoresistance. Furthermore, fibroblasts from COX-2 knockout mice exhibited cellular senescence, particularly when treated with chemotherapeutic agents. Mechanistically, COX-2 interacted with p53 protein and inhibited cellular senescence, which resulted in chemotherapeutic resistance. On the whole, these findings indicate that COX-2 may play a critical role in chemotherapeutic resistance in NPC via the inhibition of chemotherapy-induced senescence via the inactivation of p53. This study provides experimental evidence for the preclinical value of increasing chemotherapy-induced senescence by targeting COX-2 as an effective antitumor treatment in patients with recurrent NPC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma/drug therapy , Cellular Senescence/drug effects , Cyclooxygenase 2/metabolism , Nasopharyngeal Neoplasms/drug therapy , Neoplasm Recurrence, Local/pathology , Animals , Antineoplastic Agents/therapeutic use , Benzothiazoles/pharmacology , Biomarkers, Tumor , Carcinoma/mortality , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation , Cyclooxygenase 2/genetics , Drug Resistance, Neoplasm , Female , Fibroblasts , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Middle Aged , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/pathology , Neoplasm Recurrence, Local/epidemiology , Primary Cell Culture , RNA Interference , RNA, Small Interfering/metabolism , Specific Pathogen-Free Organisms , Survival Analysis , Toluene/analogs & derivatives , Toluene/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...