Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Brain Res Bull ; 207: 110877, 2024 Feb.
Article En | MEDLINE | ID: mdl-38215951

Excitability of hippocampal neurons in subarachnoid hemorrhage (SAH) rats has not been well studied. The rat SAH model was applied in this study to explore the role of nuclear factor E2-related factor (Nrf-2) in the early brain injury of SAH. The neural excitability of CA1 pyramidal cells (PCs) in SAH rats was evaluated by using electrophysiology experiments. Ferroptosis and neuroinflammation were measured by ELISA, transmission electron microscopy and western blotting. Our results indicated that SAH induced neurological deficits, brain edema, ferroptosis, neuroinflammation and neural excitability in rats. Ferrostatin-1 treatment significantly decreased the expression and distribution of IL-1ß, IL-6, IL-10, TGF-ß and TNF-α. Inhibiting ferroptosis by ferrostatin-1 can attenuate neural excitability, neurological deficits, brain edema and neuroinflammation in SAH rats. Inhibiting the expression of Nrf-2 significantly increased the neural excitability and the levels of IL-1ß, IL-6, IL-10, TGF-ß and TNF-α in Fer-1-treated SAH rats. Taken together, inhibiting the Nrf-2 induces early brain injury, brain edema and the inflammatory response with increasing of neural excitability in Fer-1-treated SAH rats. These results have indicated that inhibiting ferroptosis, neuroinflammation and neural excitability attenuates early brain injury after SAH by regulating the Nrf-2.


Brain Edema , Brain Injuries , Cyclohexylamines , Ferroptosis , Phenylenediamines , Subarachnoid Hemorrhage , Animals , Rats , Brain Injuries/metabolism , Hippocampus/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Neuroinflammatory Diseases , Neurons/metabolism , Rats, Sprague-Dawley , Signal Transduction/physiology , Subarachnoid Hemorrhage/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
PeerJ Comput Sci ; 9: e1635, 2023.
Article En | MEDLINE | ID: mdl-38077604

Traffic classification is essential in network-related areas such as network management, monitoring, and security. As the proportion of encrypted internet traffic rises, the accuracy of port-based and DPI-based traffic classification methods has declined. The methods based on machine learning and deep learning have effectively improved the accuracy of traffic classification, but they still suffer from inadequate extraction of traffic structure features and poor feature representativeness. This article proposes a model called Semi-supervision 2-Dimensional Convolution AutoEncoder (Semi-2DCAE). The model extracts the spatial structure features in the original network traffic by 2-dimensional convolution neural network (2D-CNN) and uses the autoencoder structure to downscale the data so that different traffic features are represented as spectral lines in different intervals of a one-dimensional standard coordinate system, which we call FlowSpectrum. In this article, the PRuLe activation function is added to the model to ensure the stability of the training process. We use the ISCX-VPN2016 dataset to test the classification effect of FlowSpectrum model. The experimental results show that the proposed model can characterize the encrypted traffic features in a one-dimensional coordinate system and classify Non-VPN encrypted traffic with an accuracy of up to 99.2%, which is about 7% better than the state-of-the-art solution, and VPN encrypted traffic with an accuracy of 98.3%, which is about 2% better than the state-of-the-art solution.

3.
Sci Rep ; 13(1): 21111, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38036612

Network flow watermark technology is a traffic marking technique that embeds watermark information into the characteristics of network flows to mark and trace attack flows generated by network attackers. However, with the development of network attack techniques, the time and number of packets required for network attacks have decreased. Existing network flow watermark technologies fail to balance watermark robustness and efficiency, resulting in poor practicality. To address this issue, this paper proposes an efficient hexadecimal network flow watermark method. The method introduces an efficient interval watermark algorithm and utilizes an interval synchronization algorithm to self-learn watermark parameters, thereby improving the encoding efficiency of the watermark. The design of watermark start and end markers ensures the practicality of network watermarks, enabling traceability and source attribution of attack flows in real network environments. The proposed method is experimentally tested using real network traffic, and the results demonstrate that even in the presence of a network jitter, the watermark detection success rate of this scheme remains above 95%. Compared to other network flow watermark schemes, the hexadecimal network flow watermark proposed in this paper achieves a 50% improvement in encoding and decoding efficiency while ensuring robustness. It also exhibits excellent resistance to network jitter, packet loss, and false packet insertion.

4.
Regen Biomater ; 10: rbad088, 2023.
Article En | MEDLINE | ID: mdl-37899954

Previous research on tissue-engineered blood vessels (TEBVs) has mainly focused on the intima or adventitia unilaterally, neglecting the equal importance of both layers. Meanwhile, the efficacy of grafts modified with vascular endothelial growth factor (VEGF) merely has been limited. Here, we developed a small-diameter graft that can gradually release VEGF and γ secretase inhibitor IX (DAPT) to enhance tissue regeneration and remodeling in both the intima and adventitia. In vitro, experiments revealed that the combination of VEGF and DAPT had superior pro-proliferation and pro-migration effects on endothelial cells. In vivo, the sustained release of VEGF and DAPT from the grafts resulted in improved regeneration and remodeling. Specifically, in the intima, faster endothelialization and regeneration of smooth muscle cells led to higher patency rates and better remodeling. In the adventitia, a higher density of neovascularization, M2 macrophages and fibroblasts promoted cellular ingrowth and replacement of the implant with autologous neo-tissue. Furthermore, western blot analysis confirmed that the regenerated ECs were functional and the effect of DAPT was associated with increased expression of vascular endothelial growth factor receptor 2. Our study demonstrated that the sustained release of VEGF and DAPT from the graft can effectively promote tissue regeneration and remodeling in both the intima and adventitia. This development has the potential to significantly accelerate the clinical application of small-diameter TEBVs.

5.
Quant Imaging Med Surg ; 13(10): 6778-6788, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37869308

Background: Corneal neovascularization (CoNV) is a common sign in anterior segment eye diseases, the level of which can indicate condition changes. Current CoNV evaluation methods are time-consuming and some of them rely on equipment which is not widely available in hospitals. Thus, a fast and efficient evaluation method is now urgently required. In this study, a deep learning (DL)-based model was developed to automatically segment and evaluate CoNV using anterior segment images from a slit-lamp microscope. Methods: A total of 80 cornea slit-lamp photographs (from 80 patients) with clinically manifested CoNV were collected from December 2021 to July 2022 at Tianjin Medical University Eye Hospital. Of these, 60 images were manually labelled by ophthalmologists using ImageJ software to train the vessel segmentation network IterNet. To evaluate the performance of this automated model, evaluation metrics including accuracy, precision, area under the receiver operating characteristic (ROC) curve (AUC), and F1 score were calculated between the manually labelled ground truth and the automatic segmentations of CoNV of 20 anterior segment images. Furthermore, the vessels pixel count was automatically calculated and compared with the manually labelled results to evaluate clinical usability of the automated segmentation network. Results: The IterNet model achieved an AUC of 0.989, accuracy of 0.988, sensitivity of 0.879, specificity of 0.993, area under precision-recall of 0.921, and F1 score of 0.879. The Bland-Altman plot between manually labelled ground truth and automated segmentation results produced a concordance correlation coefficient of 0.989, 95% limits of agreement between 865.4 and -562.4, and the vessels pixel count's Pearson coefficient of correlation was 0.981 (P<0.01). Conclusions: The fully automated network model IterNet provides a time-saving and efficient method to make a quantitative evaluation of CoNV using slit-lamp anterior segment images. This method demonstrates great value and clinical application potential for patient care and future research.

6.
Sensors (Basel) ; 23(13)2023 Jul 01.
Article En | MEDLINE | ID: mdl-37447930

Path planning is an important part of the navigation control system of mobile robots since it plays a decisive role in whether mobile robots can realize autonomy and intelligence. The particle swarm algorithm can effectively solve the path-planning problem of a mobile robot, but the traditional particle swarm algorithm has the problems of a too-long path, poor global search ability, and local development ability. Moreover, the existence of obstacles makes the actual environment more complex, thus putting forward more stringent requirements on the environmental adaptation ability, path-planning accuracy, and path-planning efficiency of mobile robots. In this study, an artificial potential field-based particle swarm algorithm (apfrPSO) was proposed. First, the method generates robot planning paths by adjusting the inertia weight parameter and ranking the position vector of particles (rPSO), and second, the artificial potential field method is introduced. Through comparative numerical experiments with other state-of-the-art algorithms, the results show that the algorithm proposed was very competitive.


Robotics , Robotics/methods , Algorithms
7.
Biomater Sci ; 11(9): 3197-3213, 2023 May 02.
Article En | MEDLINE | ID: mdl-36928127

Rapid endothelialization is extremely essential for the success of small-diameter tissue-engineered vascular graft (TEVG) (<6 mm) transplantation. However, severe inflammation in situ often causes cellular energy decline of endothelial cells. The cellular energy supply involved in vascular graft therapy remains unclear, and whether promoting energy supply would be helpful in the regeneration of vascular grafts needs to be established. In our work, we generated an AMPK activator (5-aminoimidazole-4-carboxamide ribonucleotide, AICAR) immobilized vascular graft. AICAR-modified vascular grafts were successfully generated by the co-electrospinning technique. In vitro results indicated that AICAR could upregulate energy supply in endothelial cells and reprogram macrophages (MΦ) to assume an anti-inflammatory phenotype. Furthermore, endothelial cells (ECs) co-cultured with AICAR achieved higher survival rates, better migration, and angiogenic capacity than the controls. Concurrently, a rabbit carotid artery transplantation model was used to investigate AICAR-modified vascular grafts at different time points. The results showed that AICAR-modified vascular grafts had higher patency rates (92.9% and 85.7% at 6 and 12 weeks, respectively) than those of the untreated group (11.1% and 0%). In conclusion, AICAR strengthened the cellular energy state and attenuated the adverse effects of inflammation. AICAR-modified vascular grafts achieved better vascular remodeling. This study provides a new perspective on promoting the regeneration of small-diameter vascular grafts.


Blood Vessel Prosthesis , Endothelial Cells , Animals , Rabbits , Vascular Remodeling , Carotid Arteries/surgery , Inflammation
8.
Int J Biol Macromol ; 225: 574-587, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36395946

Vascular transplantation has become an ideal substitute for heart and peripheral vascular bypass therapy and tissue-engineered vascular grafts (TEVGs) present an attractive potential solution for vascular surgery. However, small diameter (Ф < 6 mm) vascular do not have ideal TEVGs for clinical use. Platelet-rich plasma (PRP), a key source of bioactive molecules, has been confirmed to promote tissue repair and regeneration. In this study, we prepared PRP-loaded TEVGs (PRP-TEVGs) by electrospinning, investigated the characterization of TEVGs, and verified the effect of PRP-TEVGs in vivo and in vitro experiments. The results suggested that PRP-TEVGs had good biocompatibility, released growth factors stably, promoted cell proliferation and migration significantly, up-regulated the expression of endothelial NO synthase (eNOS) in functional vascular endothelial cells (VECs), and maintained the stability of the endothelial structure. In vivo experiments suggest that PRP can promote rapid endothelialization and reconstruction of TEVGs. Overall, this finding indicated that PRP could promote the rapid vascular endothelialization of small-diameter TEVGs by improving contractile vascular smooth muscle cells (VSMCs) regeneration, and maintaining the integrity and functionality of VECs.


Bioprosthesis , Platelet-Rich Plasma , Blood Vessel Prosthesis , Endothelial Cells/metabolism , Tissue Engineering/methods
9.
Comput Biol Med ; 151(Pt B): 106303, 2022 12.
Article En | MEDLINE | ID: mdl-36435056

Corneal nerves are of great interest to clinicians and scientists due to their potential for the diagnosis of early neurological disorders. In vivo confocal microscopy (IVCM) has been used as a novel and reliable tool for observing and quantifying corneal sub-basal nerves. Creating a wide-field montage of the nerve plexus from a large amount of IVCM images facilitates the measurement of corneal nerve morphology. In this paper, we propose a fully automatic image stitching method using neural networks. Firstly, we extend a self-supervised point detector to find the feature points on IVCM images. Then a flexible points correspondence based on the attention mechanism is developed for partial assignment of image pair. The scattered IVCM images are consequently integrated and fused according to the local offsets. We experimented with our method on 30 sets of IVCM images. Compared to conventional methods, our method improves matching accuracy and significantly reduces processing time. And by calculating the morphological parameters of the corneal nerve for both single images and stitched images, our method can evaluate the corneal nerve of patients more accurately and reliably. The implemented code is available at https://github.com/LiTianYu6/NerveStitcher.


Cornea , Neural Networks, Computer , Humans , Cornea/diagnostic imaging , Microscopy, Confocal/methods
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1181-1186, 2022 Nov 10.
Article Zh | MEDLINE | ID: mdl-36317200

Fragile X syndrome (FXS) is the most common monogenic form of inherited intellectual disability and autism spectrum disorder (ASD). More than 99% of individuals with FXS are caused by the unstable expansion of CGG repeats located within the 5'-untranslated region of the FMR1 gene. The clinical features of FXS include various degrees of cognitive deficit, physical, behavioral and psychiatric problems. Early treatment and prevention from having further affected children can be guided by molecular genetic testing of the FMR1 gene. The following guideline has combined the relevant research, guidelines and consensus worldwide, and summarized the genetic knowledge and clinical treatment for FXS in order to achieve a standardized diagnosis, treatment and prevention for patients and families affected by this disease.


Autism Spectrum Disorder , Fragile X Syndrome , Intellectual Disability , Child , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy , Intellectual Disability/genetics
11.
ACS Appl Mater Interfaces ; 14(37): 42102-42112, 2022 Sep 21.
Article En | MEDLINE | ID: mdl-36097412

AlH3 is a metastable hydride with a theoretical hydrogen capacity of 10.01 wt % and is very easy to decompose during ball milling especially in the presence of many catalysts, which will lead to the attenuation of the available hydrogen capacity. In this work, AlH3 was ball milled in air (called "air-milling") with layered Ti3C2 to prepare a Ti3C2-catalyzed AlH3 hydrogen storage material. Such air-milled and Ti3C2-catalyzed AlH3 possesses excellent hydrogen storage performances, with a low initial decomposition temperature of just 61 °C and a high hydrogen release capacity of 8.1 wt %. In addition, 6.9 wt % of hydrogen can be released within 20 min at constantly 100 °C, with a low activation energy as low as 40 kJ mol-1. Air-milling will lead to the formation of an Al2O3 oxide layer on the AlH3 particles, which will prevent continuous decomposition of AlH3 when milling with active layered Ti3C2. The layered Ti3C2 will grip on and intrude into the AlH3 particle oxide layers and then catalyze the decomposition of AlH3 during heating. The strategy employing air-milling as a synthesis method and utilizing layered Ti3C2 as a catalyst in this work can solve the key issue of severe decomposition during ball milling with catalysts economically and conveniently and thus achieve both high-capacity and low-temperature hydrogen storage of AlH3. This air-milling method is also effective for other active catalysts toward both reducing the decomposition temperature and increasing the available hydrogen capacity of AlH3.

12.
Front Oncol ; 12: 908759, 2022.
Article En | MEDLINE | ID: mdl-35912232

Background: The genomic features of cancer cells may confer the metastatic ability of lung adenocarcinoma (LUAD) to metastasize to specific organs. We aimed to identify the differences in genomic alterations between patients with primary LUAD with and without metastases and to elucidate the metastatic biology that may help developing biomarker-directed therapies for advanced or metastatic disease. Methods: A retrospective cohort of 497 patients with LUAD including 388 primary tumors (PR), 53 bone metastases (MT-bone), 30 liver metastases (MT-liver), and 26 brain metastases (MT-brain) was tested for genomic alterations by a next-generation sequencing assay. Results: The EGFR, TP53, TERT, LRP1B, CDKN2A, ERBB2, ALK, and KMT2C genes had a high frequency of mutations, and the mutations were shared by PR and metastases groups. TP53 and EGFR were the most common mutated genes. In comparison with PR, KRAS, STK11, ATM, NPM1, and ROS1 were significantly mutated in MT-brain, and TP53, MYC, RSPO2, CDKN2a, and CDKN2B were significantly mutated in MT-liver. The frequencies of TP53, CDKN2A, MTAP, PRKCI, and APC mutations were higher in MT-bone than that in PR. The ERBB, phosphoinositide-3-kinase/protein kinase B (PI3K-AKT), cell cycle, Fibroblast growth factor (FGF), and homologous recombination deficiency signaling pathways were affected in both PR and metastases, and there is higher frequency of mutations in metastases. Moreover, the co-mutations in patients with PR and metastasis were respectively analyzed. In addition, the programmed death ligand 1 (PD-L1) level was obviously related to tumor stage and tumor metastases, and the tumor mutational burden was correlated to clinicopathological features including age, gender, pathological stages, and tumor metastases. FGFR1, KAT6A, MYC, RAD21, TP53, and DAXX were also dramatically correlated to the tumor mutational burden. Conclusion: Metastases are the most devastating stage of tumors and the main cause of cancer-related deaths. Our results provided a clinically relevant view of the tumor-intrinsic mutational landscape of patients with metastatic LUAD.

13.
FASEB J ; 36(7): e22411, 2022 07.
Article En | MEDLINE | ID: mdl-35695805

NgBR is the Nogo-B receptor, encoded by NUS1 gene. As NgBR contains a C-terminal domain that is similar to cis-isoprenyltransferase (cis-IPTase), NgBR was speculated to stabilize nascent Niemann-Pick type C 2 (NPC2) to facilitate cholesterol transport out of lysosomes. Mutations in the NUS1 were known as risk factors for Parkinson's disease (PD). In our previous study, it was shown that knockdown of Drosophila NUS1 orthologous gene tango14 causes decreased climbing ability, loss of dopaminergic neurons, and decreased dopamine contents. In this study, tango14 mutant flies were generated with a mutation in the C-terminal enzyme activity region using CRISPR/Cas9. Tango14 mutant showed a reduced lifespan with locomotive defects and cholesterol accumulation in Malpighian tubules and brains, especially in dopaminergic neurons. Multilamellar bodies were found in tango14 mutants using electron microscopy. Neurodegenerative-related brain vacuolization was also detected in tango14 knockdown flies in an age-dependent manner. In addition, tango14 knockdown increased α-synuclein (α-syn) neurotoxicity in α-syn-overexpressing flies, with decreased locomotive activities, dopamine contents, and the numbers of dopaminergic neurons in aging flies. Thus, these observations suggest a role of NUS1, the ortholog of tango14, in PD-related pathogenesis.


Parkinson Disease , Animals , Cholesterol , Dopamine , Dopaminergic Neurons/pathology , Drosophila/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , alpha-Synuclein/genetics
14.
Arch Med Sci ; 18(3): 753-760, 2022.
Article En | MEDLINE | ID: mdl-35591840

Introduction: Gastric cancer is a frequently detected malignancy, and its incidence has increased over the past decades in East Asia. The present study investigated the effect of 5,7,2, 5-tetrahydroxy-8,6-dimethoxyflavone (THDMF) on gastric cancer cells and explored the underlying mechanism. The study analysed cell viability changes, apoptotic features, and metastasis potential of treatment with THDMF. Material and methods: MTT colorimetric assay was used for measurement of MKN28, MKN45, and GES-1 cell proliferation and flow cytometry for the detection of apoptosis. Transwell and wound healing assays were used to observe the invasion and migration abilities of MKN28 cells. The expression of p21, MMP2/-9, PI3K, and c-Myc proteins was detected by western blotting. Results: The THDMF treatment significantly (p < 0.05) reduced MKN28 and MKN45 cell proliferation without changing GES-1 cell viability. A significant increase in apoptotic cell population on treatment with THDMF was observed. Treatment of MKN28 cells with THDMF increased the percentage of cells in the G1 phase. Exposure of MKN28 cells to THDMF caused a marked decrease in invasion and migration potential in comparison to control cells. The expression of miR-145 was markedly increased in MKN28 cells on treatment with THDMF. In MKN28 cells expression of c-Myc, PI3K, p-AKT, MMP-2, and MMP-9 was suppressed markedly on exposure to THDMF. The expression of p21 protein in MKN28 cells was markedly promoted on exposure to THDMF. Conclusions: THDMF exhibits anti-cancer effect on gastric cancer cells in vitro by activation of cell apoptosis and arrest of cell cycle. In addition, THDMF promoted miR-145 expression and down-regulation of PI3K/AKT signalling pathway in MKN28 cells. Therefore, THDMF may be utilised as a potential novel therapeutic agent for the treatment of gastric cancer.

15.
Front Pharmacol ; 13: 796616, 2022.
Article En | MEDLINE | ID: mdl-35370693

Neuroinflammation plays a key role in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have shown that metformin exerts anti-inflammatory effects and promotes functional recovery in various central nervous system diseases. We designed this study to investigate the effects of metformin on EBI after SAH. Our results indicate that the use of metformin alleviates the brain edema, behavioral disorders, cell apoptosis, and neuronal injury caused by SAH. The SAH-induced NLRP3-associated inflammatory response and the activation of microglia are also suppressed by metformin. However, we found that the blockade of AMPK with compound C weakened the neuroprotective effects of metformin on EBI. Collectively, our findings indicate that metformin exerts its neuroprotective effects by inhibiting neuroinflammation in an AMPK-dependent manner, by modulating the production of NLRP3-associated proinflammatory factors and the activation of microglia.

16.
Stem Cells Transl Med ; 11(3): 297-309, 2022 03 31.
Article En | MEDLINE | ID: mdl-35267023

Mesenchymal stem cells (MSCs) are a promising cellular vehicle for transferring anti-cancer factors to malignant tumors. Currently, a variety of anti-cancer agents, including the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), have been loaded into MSCs derived from a range of sources through different engineering methods. These engineered MSCs exhibit enormous therapeutic potential for various cancers. To avoid the intrinsic defects of MSCs derived from tissues and the potential risk of viral vectors, TRAIL was site-specifically integrated into the ribosomal DNA (rDNA) locus of human-induced pluripotent stem cells (iPSCs) using a non-viral rDNA-targeting vector and transcription activator-like effector nickases (TALENickases). These genetically modified human iPSCs were differentiated into an unlimited number of homogeneous induced MSCs (TRAIL-iMSCs) that overexpressed TRAIL in both culture supernatants and cell lysates while maintaining MSC-like characteristics over continuous passages. We found that TRAIL-iMSCs significantly induced apoptosis in A375, A549, HepG2, and MCF-7 cells in vitro. After intravenous infusion, TRAIL-iMSCs had a prominent tissue tropism for A549 or MCF-7 xenografts and significantly inhibited tumor growth through the activation of apoptotic signaling pathways without obvious side effects in tumor-bearing mice models. Altogether, our results showed that TRAIL-iMSCs have strong anti-tumor effects in vitro and in vivo on a range of cancers. This study allows for the development of an unlimited number of therapeutic gene-targeted MSCs with stable quality and high homogeneity for cancer therapy, thus highlighting a universal and safe strategy for stem cell-based gene therapy with high potential for clinical applications.


Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Neoplasms , Animals , Cell Differentiation , Humans , Mice , Neoplasms/metabolism , Neoplasms/therapy , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism
17.
J Pers Med ; 12(3)2022 Mar 02.
Article En | MEDLINE | ID: mdl-35330385

Expanded non-coding RNA repeats of CCUG are the underlying genetic causes for myotonic dystrophy type 2 (DM2). There is an urgent need for effective medications and potential drug targets that may alleviate the progression of the disease. In this study, 3140 small-molecule drugs from FDA-approved libraries were screened through lethality and locomotion phenotypes using a DM2 Drosophila model expressing 720 CCTG repeats in the muscle. We identified ten effective drugs that improved survival and locomotor activity of DM2 flies, including four that share the same predicted targets in the TGF-ß pathway. The pathway comprises two major branches, the Activin and BMP pathways, which play critical and complex roles in skeletal development, maintenance of homeostasis, and regeneration. The Drosophila model recapitulates pathological features of muscle degeneration in DM2, displaying shortened lifespan, a decline in climbing ability, and progressive muscle degeneration. Increased levels of p-smad3 in response to activin signaling were observed in DM2 flies. Decreased levels of activin signaling using additional specific inhibitors or genetic method ameliorated climbing defects, crushed thoraxes, structure, and organization of muscle fibers. Our results demonstrate that a decrease in activin signaling is sufficient to rescue muscle degeneration and is, therefore, a potential therapeutic target for DM2.

18.
Procedia Comput Sci ; 199: 354-360, 2022.
Article En | MEDLINE | ID: mdl-35136459

Under the influence of COVID-19, the global economic and social development is facing great challenges. With the increase of government financial pressure and the decrease of debt paying ability, the problem of debt risk of local governments in China is attracting wide attention. In order to measure the level of China's local government debt risk under the influence of COVID-19, this paper takes China's Sichuan Province as an example, collects the core indicators data of measuring local government debt risk in 2017-2020 years, and uses AHP-TOPSIS method to make a comprehensive analysis of the local government debt risk situation in different periods before and after COVID-19. It is found that the local government debt risk in Sichuan Province is generally controllable. However, influenced by COVID-19, in 2020, the overall level of local government debt risk in Sichuan province expanded by 22.1% compared with 2019, this is mainly due to the further expansion of debt scale and slower economic growth. This paper suggests that the Chinese government should speed up the construction of comprehensive early warning and supervision system of local government debt risk, and prevent and resolve the debt risk of local government in advance.

19.
J Inflamm Res ; 14: 2667-2680, 2021.
Article En | MEDLINE | ID: mdl-34188516

BACKGROUND: Ischemic stroke is one of the leading causes of mortality and disability worldwide. Following stroke, there is secondary neuroinflammation that promotes further injury. Identifying the long non-coding RNA (lncRNA) involved in neuroinflammation after cerebral ischemic stroke will promote the discovery of potential therapeutic targets. METHODS: We identified differentially expressed genes from genome-wide RNA-seq profiles of mice with focal ischemia using Gene Ontology Term Enrichment, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment analyses. Immune cell infiltration deconvolution, protein-protein interaction network construction, and co-expression network analyses were also used to screen lncRNAs. In further experiments, lncRNA Neat1 knockdown animal models were developed by intraventricular injection of the antisense oligonucleotide before performing middle cerebral artery occlusion (MCAO). An enzyme-linked immunosorbent assay was performed to measure the level of cytokines. Hematoxylin-eosin staining and immunohistochemical staining were used to observe the changes in morphology. RESULTS: Enrichment analysis revealed that differential mRNAs induced neuroinflammation after MCAO. Immune deconvolution showed that the proportion of microglia gradually increased while monocytes decreased within 24 h. We identified six hub lncRNAs (Neat1, Gm10827, Trp53cor1, Mir670hg, C730002L08Rik, and Mir181a-hg) that were highly correlated with activated-microglia mRNAs (cor > 0.8). We found that Neat1 had the highest correlation coefficient with pro-inflammatory factor mRNA levels. In vivo experiments demonstrated that Neat1 had abnormally high expression after MCAO. Knockdown of Neat1 could significantly alleviate brain damage by reducing the number of activated microglia and reducing their release of proinflammatory cytokines. CONCLUSION: We identified inflammation-associated lncRNA Neat1 as crucial, which means it is a potential target for ischemic stroke treatment.

20.
Cancer Biomark ; 30(3): 321-329, 2021.
Article En | MEDLINE | ID: mdl-33337349

BACKGROUND: Metastasis regularly is a marker of the disease development of cancers. Some metastatic sites significantly showed more serious clinical outcomes in non-small cell lung cancer (NSCLC). Whether they are caused by tissue-specific (TS) or non-tissue-specific (NTS) mechanisms is still unclear. OBJECTIVE: Explore co-expression gene modules of non-small cell lung cancer metastases. METHODS: Weighted Correlation Network Analysis (WGCNA) was used to identify the gene modules among the metastases of NSCLC. The clinical significance of those gene modules was evaluated with the Cox hazard proportional model with another independent dataset. Functions of each gene module were analyzed with gene ontology. Typical genes were further studied. RESULTS: There were two TS gene modules and two NTS gene modules identified. One TS gene module (green module) and one NTS gene module (purple module) significantly correlated with survival. This NTS gene module (purple module) was significantly enriched in the epithelial-to-mesenchymal transition (EMT) process. Higher expression of the typical genes (CA14, SOX10, TWIST1, and ALX1) from EMT process was significantly associated with a worse survival. CONCLUSION: The lethality of NSCLC metastases was caused by TS gene modules and NTS gene modules, among which the EMT-related gene module was critical for a worse clinical outcome.


Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Humans , Lung Neoplasms/mortality , Neoplasm Metastasis , Survival Analysis
...