Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 366
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000347

ABSTRACT

Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of fruit size formation was investigated through morphological, cytological and transcriptomic analyses, as well as exogenous ethrel and aminoethoxyinylglycine (AVG: ethylene inhibitor) experiments using the large fruit and small fruit of 'Yaoxianwuhua'. The results showed that stages 3-4 (June 11-June 25) are the crucial morphological period for differentiation of large fruit and small fruit in persimmon. At this crucial morphological period, the cell number in large fruit was significantly more than that in small fruit, indicating that the difference in cell number is the main reason for the differentiation of persimmon fruit size. The difference in cell number was caused by cell division. CNR1, ANT, LAC17 and EB1C, associated with cell division, may be involved in regulating persimmon fruit size. Exogenous ethrel resulted in a decrease in fruit weight, and AVG treatment had the opposite effect. In addition, LAC17 and ERF114 were upregulated after ethrel treatment. These results indicated that high ethylene levels can reduce persimmon fruit size, possibly by inhibiting cell division. This study provides valuable information for understanding the regulation mechanism of persimmon fruit size and lays a foundation for subsequent breeding and artificial regulation of fruit size.


Subject(s)
Diospyros , Fruit , Gene Expression Regulation, Plant , Diospyros/genetics , Diospyros/growth & development , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant/drug effects , Gene Expression Profiling , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Front Public Health ; 12: 1368519, 2024.
Article in English | MEDLINE | ID: mdl-38903570

ABSTRACT

Objective: To investigate the caregiver burden of parents of school-age children with asthma and analyze the factors influencing their caregiver burden. Methods: A convenience sampling method was used to select 366 parents of school-age children with asthma who visited the outpatient departments of three tertiary hospitals in Sichuan Province, China, from January 2021 to July 2021. A general information questionnaire and the Caregiver Burden Inventory (CBI) were used to assess the current caregiver burden and analyze the influencing factors. Results: The caregiver burden score of parents of school-age children with asthma was 27 (17, 39), with 40.43% of parents experiencing moderate to high levels of burden. Detailed results of univariate analysis showed that there were significant differences in caregiver burden scores based on parents' gender, highest education level, number of children, occupation, family history of asthma, monthly family income, annual medical expenses for the child, child's gender, whether the child had undergone lung function tests, number of emergency visits due to asthma exacerbation in the past 3 months, and whether the child had missed school due to asthma exacerbation in the past 3 months (p < 0.1). Detailed results of multivariate analysis showed that parents' gender, occupation, family history of asthma, monthly family income, annual medical expenses for the child, number of emergency visits due to asthma exacerbation in the past 3 months, and whether the child had missed school due to asthma exacerbation in the past 3 months were independent risk factors for caregiver burden in parents of school-age children with asthma (p < 0.05). Conclusion: Parents of school-age children with asthma experience a certain level of caregiver burden, with over one-third of parents experiencing moderate to high levels of burden. Being a mother, being a worker, having no family history of asthma, having low monthly family income, having high annual medical expenses for the child, having frequent emergency visits due to asthma exacerbation in the past 3 months, and having missed school due to asthma exacerbation in the past 3 months are independent risk factors for caregiver burden in parents of school-age children with asthma, healthcare providers should develop feasible coping strategies, such as paying attention to caregivers' psychological condition to reduce the burden of caring for parents of school-age children with asthma. The entire society should also make efforts in improving social support and strengthening healthcare coverage in order to achieve the aforementioned goals.


Subject(s)
Asthma , Caregiver Burden , Parents , Humans , Asthma/psychology , Male , Female , Cross-Sectional Studies , Child , China , Parents/psychology , Surveys and Questionnaires , Caregiver Burden/psychology , Adult , Caregivers/psychology , Caregivers/statistics & numerical data , Middle Aged , Adolescent , Cost of Illness
4.
Nat Med ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839897

ABSTRACT

Gene therapy is a promising approach for hereditary deafness. We recently showed that unilateral AAV1-hOTOF gene therapy with dual adeno-associated virus (AAV) serotype 1 carrying human OTOF transgene is safe and associated with functional improvements in patients with autosomal recessive deafness 9 (DFNB9). The protocol was subsequently amended and approved to allow bilateral gene therapy administration. Here we report an interim analysis of the single-arm trial investigating the safety and efficacy of binaural therapy in five pediatric patients with DFNB9. The primary endpoint was dose-limiting toxicity at 6 weeks, and the secondary endpoint included safety (adverse events) and efficacy (auditory function and speech perception). No dose-limiting toxicity or serious adverse event occurred. A total of 36 adverse events occurred. The most common adverse events were increased lymphocyte counts (6 out of 36) and increased cholesterol levels (6 out of 36). All patients had bilateral hearing restoration. The average auditory brainstem response threshold in the right (left) ear was >95 dB (>95 dB) in all patients at baseline, and the average auditory brainstem response threshold in the right (left) ear was restored to 58 dB (58 dB) in patient 1, 75 dB (85 dB) in patient 2, 55 dB (50 dB) in patient 3 at 26 weeks, and 75 dB (78 dB) in patient 4 and 63 dB (63 dB) in patient 5 at 13 weeks. The speech perception and the capability of sound source localization were restored in all five patients. These results provide preliminary insights on the safety and efficacy of binaural AAV gene therapy for hereditary deafness. The trial is ongoing with longer follow-up to confirm the safety and efficacy findings. Chinese Clinical Trial Registry registration: ChiCTR2200063181 .

5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928480

ABSTRACT

Our study aimed to investigate the role of ferroptosis in sevoflurane-induced hearing impairment and explore the mechanism of the microRNA-182-5p (miR-182-5p)/Glutathione Peroxidase 4 (GPX4) pathway in sevoflurane-induced ototoxicity. Immunofluorescence staining was performed using myosin 7a and CtBP2. Cell viability was assessed using the CCK-8 kit. Fe2+ concentration was measured using FerroOrange and Mi-to-FerroGreen fluorescent probes. The lipid peroxide level was assessed using BODIPY 581/591 C11 and MitoSOX fluorescent probes. The auditory brainstem response (ABR) test was conducted to evaluate the hearing status. Bioinformatics tools and dual luciferase gene reporter analysis were used to confirm the direct targeting of miR-182-5p on GPX4 mRNA. GPX4 and miR-182-5p expression in cells was assessed by qRT-PCR and Western blot. Ferrostatin-1 (Fer-1) pretreatment significantly improved hearing impairment and damage to ribbon synapses in mice caused by sevoflurane exposure. Immunofluorescence staining revealed that Fer-1 pretreatment reduced intracellular and mitochondrial iron overload, as well as lipid peroxide accumulation. Our findings indicated that miR-182-5p was upregulated in sevoflurane-exposed HEI-OC1 cells, and miR-182-5p regulated GPX4 expression by binding to the 3'UTR of GPX4 mRNA. The inhibition of miR-182-5p attenuated sevoflurane-induced iron overload and lipid peroxide accumulation. Our study elucidated that the miR-182-5p/GPX4 pathway was implicated in sevoflurane-induced ototoxicity by promoting ferroptosis.


Subject(s)
Ferroptosis , MicroRNAs , Ototoxicity , Phospholipid Hydroperoxide Glutathione Peroxidase , Sevoflurane , Ferroptosis/drug effects , Ferroptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Sevoflurane/adverse effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Animals , Mice , Ototoxicity/metabolism , Ototoxicity/etiology , Signal Transduction/drug effects , Cell Line , Male , Hearing Loss/chemically induced , Hearing Loss/genetics , Hearing Loss/metabolism , Hearing Loss/pathology , Mice, Inbred C57BL , Phenylenediamines/pharmacology , Cyclohexylamines
6.
Environ Sci Pollut Res Int ; 31(30): 42970-42990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886269

ABSTRACT

Air pollution can cause disease and has become a major global environmental problem. It is currently believed that air pollution may be related to the progression of SSNHL. As a rapidly developing city in recent years, Hefei has serious air pollution. In order to explore the correlation between meteorological variables and SSNHL admissions, we conducted this study. This study investigated the short-term associations between SSNHL patients admitted to the hospital and Hefei climatic variables. The daily data on SSNHL-related hospital admissions and meteorological variables containing mean temperature (T-mean; °C), diurnal temperature range (DTR; °C), atmospheric pressure (AP; Hp), and relative humidity (RH; %), from 2014 to 2021 (2558 days), were collected. A time-series analysis integrating distributed lag non-linear models and generalized linear models was used. PubMed, Embase, Cochrane Library, and Web of Science databases were searched. Literature published up to August 2023 was reviewed to explore the potential impact mechanisms of meteorological factors on SSNHL. The mechanisms were determined in detail, focusing on wind speed, air pressure, temperature, humidity, and air pollutants. Using a median of 50.00% as a baseline, the effect of exceedingly low T-mean in the single-day hysteresis effect model began at a lag of 8 days (RR = 1.032, 95% CI: 1.001 ~ 1.064). High DTR affected the admission rate for SSNHL on lag 0 day. The significance of the effect was the greatest on that day (RR = 1.054, 95% CI: 1.007 ~ 1.104) and then gradually decreased. High and exceedingly high RH affected the admission rate SSNHL on lag 0 day, and these effects lasted for 8 and 7 days, respectively. There were significant associations between all grades of AP and SSNHL. This is the first study to assess the effect of meteorological variables on SSNHL-related admissions in China using a time-series approach. Long-term exposures to high DTR, RH values, low T-mean values, and all AP grades enhance the incidence of SSNHL in residents. Limiting exposure to extremes of ambient temperature and humidity may reduce the number of SSNHL-related hospital visits in the region. It is advisable to maintain a suitable living environment temperature and avoid extreme temperature fluctuations and high humidity. During periods of high air pollution, it is recommended to stay indoors and refrain from outdoor exercise.


Subject(s)
Air Pollution , Meteorological Concepts , China/epidemiology , Humans , Air Pollutants , Hearing Loss, Sensorineural/epidemiology , Temperature , Humidity , Hearing Loss, Sudden/epidemiology
7.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38929153

ABSTRACT

Cisplatin is a widely used antineoplastic drug for treating various types of cancers. However, it can cause severe side effects, such as bilateral and irreversible hearing loss, which significantly impacts quality of life. Ferroptosis, an iron-dependent form of programmed cell death, has been implicated in the pathogenesis of cisplatin-induced ototoxicity. Here, we investigated the effects of nuciferine, a natural active ingredient isolated from lotus species, on the ferroptosis of cochlear hair cells. Firstly, our results demonstrated that nuciferine can protect hair cells against RSL3-induced and cisplatin-induced damage. Secondly, nuciferine treatment reduced ferrous iron (Fe2+) overload in cochlear hair cells via inhibiting NCOA4-mediated ferritinophagy. Inhibition of ferritinophagy by knocking down Ncoa4 alleviated cisplatin-induced ototoxicity. Importantly, nuciferine treatment mitigated cochlear hair cell loss and damage to ribbon synapse, and improved mouse hearing function in an acute cisplatin-induced hearing loss model. Our findings highlight the role of NCOA4-mediated ferritinophagy in the pathogenesis of cisplatin-induced ototoxicity and provide evidence for nuciferine as a promising protective agent for treating cisplatin-induced hearing loss.

8.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 945-951, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38733163

ABSTRACT

Hearing loss constitutes one of the most prevalent conditions within the field of otolaryngology. Recent investigations have revealed that mutations in deafness-associated genes, including point mutations and variations in DNA sequences, can cause hearing impairments. With the ethology of deafness remaining unclear for a substantial portion of the affected population, further screenings for pathogenic mutations are imperative to unveil the underlying mechanisms. On this study, by using next-generation sequencing, we examine 129 commonly implicated deafness-related genes in a Chinese family with hearing loss, revealing a novel heterozygous dominant mutation in the GJB2 gene (GJB2: c.65T>G: p. Lys22Thr). This mutation consistently occurs in affected family members but is not detected in unaffected individuals, strongly suggesting its causative role in hearing loss. Structural analysis indicates potential disruption to the Cx26 gap junction channel's hydrogen bond and electrostatic interactions, aligning with predictions from the PolyPhen and SIFT algorithms. In conclusion, our study provides conclusive evidence that the identified heterozygous GJB2 mutation (GJB2: c.65T>G: p. Lys22Thr), specifically the K22T alteration, is the primary determinant of the family's deafness. This contribution enhances our understanding of the interplay between common deafness-associated genes and hearing loss, offering valuable insights for diagnostic guidance and the formulation of therapeutic strategies for this condition.


Subject(s)
Connexin 26 , Hearing Loss , Adult , Female , Humans , Male , China , Connexin 26/genetics , East Asian People/genetics , Genes, Dominant , Hearing Loss/genetics , Heterozygote , Mutation , Pedigree
9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732032

ABSTRACT

Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.


Subject(s)
Diospyros , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators , Diospyros/genetics , Diospyros/metabolism , Diospyros/growth & development , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Plant Growth Regulators/metabolism , Gene Expression Profiling/methods , Transcriptome , Plant Proteins/metabolism , Plant Proteins/genetics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development
10.
Bioengineering (Basel) ; 11(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790305

ABSTRACT

BACKGROUND: Sensorineural hearing loss (SNHL) is a multifactorial disorder with potential links to various physiological systems, including the cardiovascular system via blood lipid levels such as triglycerides (TG). This study investigates the causal relationship between TG levels and SNHL using Mendelian randomization (MR), which offers a method to reduce confounding and reverse causality by using genetic variants as instrumental variables. METHODS: Utilizing publicly available genome-wide association study (GWAS) data, we performed a two-sample MR analysis. The initial analysis unveiled a causal relationship between TG (GWAS ID: ebi-a-GCST90018975) and SNHL (GWAS ID: finn b-H8_HL_SEN-NAS). Subsequent analysis validated this through MR with a larger sample size for TG (GWAS ID: ieu-b-111) and SNHL. To conduct the MR analysis, we utilized several methods including inverse-variance weighted (IVW), MR Egger, weighted median, and weighted mode. We also employed Cochrane's Q test to identify any heterogeneity in the MR results. To detect horizontal pleiotropy, we conducted the MR-Egger intercept test and MR pleiotropy residual sum and outliers (MR-PRESSO) test. We performed a leave-one-out analysis to assess the sensitivity of this association. Finally, a meta-analysis of the MR results was undertaken. RESULTS: Our study found a significant positive correlation between TG and SNHL, with OR values of 1.14 (95% CI: 1.07-1.23, p < 0.001) in the IVW analysis and 1.09 (95% CI: 1.03-1.16, p < 0.006) in the replicate analysis. We also found no evidence of horizontal pleiotropy or heterogeneity between the genetic variants (p > 0.05), and a leave-one-out test confirmed the stability and robustness of this association. The meta-analysis combining the initial and replicate analyses showed a significant causal effect with OR values of 1.11 (95% CI: 1.06-1.16, p = 0.01). CONCLUSION: These findings indicate TG as a risk factor for SNHL, suggesting potential pathways for prevention and intervention in populations at risk. This conclusion underscores the importance of managing TG levels as a strategy to mitigate the risk of developing SNHL.

11.
Research (Wash D C) ; 7: 0341, 2024.
Article in English | MEDLINE | ID: mdl-38665848

ABSTRACT

Adeno-associated virus (AAV)-mediated gene therapy is widely applied to treat numerous hereditary diseases in animal models and humans. The specific expression of AAV-delivered transgenes driven by cell type-specific promoters should further increase the safety of gene therapy. However, current methods for screening cell type-specific promoters are labor-intensive and time-consuming. Herein, we designed a "multiple vectors in one AAV" strategy for promoter construction in vivo. Through this strategy, we truncated a native promoter for Myo15 expression in hair cells (HCs) in the inner ear, from 1,611 bp down to 1,157 bp, and further down to 956 bp. Under the control of these 2 promoters, green fluorescent protein packaged in AAV-PHP.eB was exclusively expressed in the HCs. The transcription initiation ability of the 2 promoters was further verified by intein-mediated otoferlin recombination in a dual-AAV therapeutic system. Driven by these 2 promoters, human otoferlin was selectively expressed in HCs, resulting in the restoration of hearing in treated Otof -/- mice for at least 52 weeks. In summary, we developed an efficient screening strategy for cell type-specific promoter engineering and created 2 truncated Myo15 promoters that not only restored hereditary deafness in animal models but also show great potential for treating human patients in future.

12.
Plant Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687907

ABSTRACT

Blackleg and soft rot are harmful diseases in potato (Solanum tuberosum) caused by Pectobacterium spp. and Dickeya spp. (Czajkowski et al. 2015). The occurrence of potato blackleg was serious in potato-producing areas around Xiapu County in Fujian Province, China, in 2021 (6 ha) and 2022 (7 ha), with an incidence of approximately 5%, which reached nearly 23%. Three diseased plants were collected to isolate the pathogen. Single colonies from each sampled plant were isolated and streaked onto fresh plates. DNA from three colonies from different plants was PCR amplified with primer pair 27F/1492R (Lane 1991) for the 16S rRNA gene. Since the sequences were identical, we selected strain M2-3 for further analysis. The strain M2-3 was gram-negative, pectolytic on CVP, grew at 37°C and 5% NaCl. The bacterium was positive for phosphatase activity, erythromycin sensitivity, indole production, gelatin liquefaction, malonic utilization, and acid production from, melibiose, raffinose, and arabinose. The bacterium was negative for sucrose, α-methyl glucoside, sorbitol, trehalose, lactose, and sodium citrate (Fujimoto et al. 2018;),although sucrose and lactose did not provide the expected results, there are exception in all species. The genome of strain M2-3 was sequenced and deposited in the NCBI database under accession numbers: CP077422. An Average Nucleotide Identity (ANI) analysis showed that M2-3 clustered with other D. dadantii strains and has a 98.39% identity with D. dadantii strain DSM 18020 (CP023467). The housekeeping genes (recA, dnaX, acnA, gapA, icd, mdh, mtlD and pgi) were amplified with primer pairs designed previously(Fujimoto et al. 2018; Ma et al. 2007) and sequenced. A multilocus sequence analysis (MLSA) was performed by concatenating the 8 gene sequences and constructing a maximum likelihood phylogenetic tree using PhyloSuite version 1.2.1 (Zhang et al. 2020) and IQ-tree version 1.6.8 (Nguyen et al. 2015) software. Strain M2-3 was clustered together with Dickeya dadantii. For the pathogenicity test, three plants per treatment, totaling nine plants, were used. Bacterial suspensions (1×10^8 CFU/mL) were made in a 10mM PBS buffer. 10 µL of M2-3, D. dadantii type strain 18020 (positive control), and buffer (negative control) were injected into the plant stems near the base. Water stains appeared at the site of inoculation after 2 days and they gradually became black and rotten. The leaves became yellow and wilted, and the petiole base rotted within 5 days of inoculation completing the Koch postulate. According to average nucleotide identity and housekeeping gene sequence analysis, strain M2-3 was identified as Dickeya dadantii. Previous studies have reported several pathogens that cause potato blackleg in China, including P. atrosepticum, P. carotovorum, P. brasiliense, P. parmentieri, P. polaris, and P. punjabense (Li-ping et al. 2020; Wang et al. 2021). To the best of our knowledge, this study is the first to report potato blackleg disease caused by Dickeya dadantii in Fujian Province, China. This finding suggests that this pathogen may cause a threat to potato production in Fujian Province.

13.
PLoS One ; 19(3): e0299970, 2024.
Article in English | MEDLINE | ID: mdl-38478519

ABSTRACT

The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.


Subject(s)
COVID-19 , Deep Learning , Liver Neoplasms , Humans , Algorithms , COVID-19/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , Image Processing, Computer-Assisted
14.
Sleep Biol Rhythms ; 22(2): 207-215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38524162

ABSTRACT

The meta-analysis aims to explore the effect of cognitive behavioral therapy for insomnia (CBT-I) in the perinatal period. Randomized controlled trials (RCTs) assessed the effects of CBT-I in perinatal women with insomnia, published in English, were eligible. Electronic searches were performed using PubMed, Embase (Elsevier), PsycINFO (Ebsco), and Web of Science (Clarivate Analytics). Insomnia Severity Index (ISI) as the primary outcome was used to estimate the pooled effects and durable efficacy of CBT-I. The secondary outcome measures were Edinburgh Postnatal Depression Scale (EPDS) and Pittsburgh Sleep Quality Index (PSQI). Of 46 studies reviewed, seven studies met the inclusion criteria. The meta-analysis indicated significant improvement in insomnia as measured with the ISI (standardized mean difference (SMD) = - 0.62, 95% confidence intervals (CI) - 0.77, - 0.47, I2 = 28%). At the follow-up time point, the meta-analysis indicated the durable efficacy of CBT-I (SMD = - 0.47, 95% CI - 0.90, - 0.03, I2 = 73%). Definite improvement of CBT-I on EPDS (SMD = -0.31, 95% CI - 0.55, - 0.06, I2 = 33%) and PSQI (SMD = - 0.82, 95% CI - 1.27, - 0.38, I2 = 68%) score change post-intervention were found. In sub-analyses, CBT-I had similar effect sizes, independent of possible modifiers (study population, comparison group, delivery format, etc.). This meta-analysis demonstrates that CBT-I is effective in alleviating insomnia, depression, and sleep quality among perinatal women. It is equally important to find that CBT-I has a durable efficacy on insomnia in the perinatal period. However, it is necessary to include larger samples and conduct rigorous RCTs to further explore this issue. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-023-00502-z.

15.
Article in Chinese | MEDLINE | ID: mdl-38297849

ABSTRACT

Objective:This study aims to analyze the threshold changes in distortion product otoacoustic emissions(DPOAE) and auditory brainstem response(ABR) in adult Otof-/- mice before and after gene therapy, evaluating its effectiveness and exploring methods for assessing hearing recovery post-treatment. Methods:At the age of 4 weeks, adult Otof-/- mice received an inner ear injection of a therapeutic agent containing intein-mediated recombination of the OTOF gene, delivered via dual AAV vectors through the round window membrane(RWM). Immunofluorescence staining assessed the proportion of inner ear hair cells with restored otoferlin expression and the number of synapses.Statistical analysis was performed to compare the DPOAE and ABR thresholds before and after the treatment. Results:AAV-PHP. eB demonstrates high transduction efficiency in inner ear hair cells. The therapeutic regimen corrected hearing loss in adult Otof-/- mice without impacting auditory function in wild-type mice. The changes in DPOAE and ABR thresholds after gene therapy are significantly correlated at 16 kHz. Post-treatment,a slight increase in DPOAE was observeds,followed by a recovery trend at 2 months post-treatment. Conclusion:Gene therapy significantly restored hearing in adult Otof-/- mice, though the surgical delivery may cause transient hearing damage. Precise and gentle surgical techniques are essential to maximize gene therapy's efficacy.


Subject(s)
Ear, Inner , Hearing Loss , Mice , Animals , Otoacoustic Emissions, Spontaneous/physiology , Hearing/physiology , Hearing Loss/genetics , Hearing Loss/therapy , Genetic Therapy , Auditory Threshold/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Membrane Proteins
17.
Sci Rep ; 14(1): 4547, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402284

ABSTRACT

The increasing number of plant mitochondrial DNA genomes (mtDNA) sequenced reveals the extent of transfer from both chloroplast DNA genomes (cpDNA) and nuclear DNA genomes (nDNA). This study created a library and assembled the chloroplast and mitochondrial genomes of the leafy sweet potato better to understand the extent of mitochondrial and chloroplast gene transfer. The full-length chloroplast genome of the leafy sweet potato (OM808940) is 161,387 bp, with 132 genes annotated, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The mitochondrial genome (OM808941) was 269,578 bp in length and contained 69 functional genes, including 39 protein-coding genes, 6 rRNA genes, and 24 tRNA genes. 68 SSR loci were found in the leafy sweet potato organelle genome, including 54 in the chloroplast genome and 14 in the mitochondria genome. In the sweet potato mitochondrial genome, most genes have RNA editing sites, and the conversion ratio from hydrophilic amino acids to hydrophobic amino acids is the highest, reaching 47.12%. Horizontal transfer occurs in the sweet potato organelle genome and nuclear genome. 40 mitochondrial genome segments share high homology with 14 chloroplast genome segments, 33 of which may be derived from chloroplast genome horizontal transfer. 171 mitochondrial genome sequences come from the horizontal transfer of nuclear genome. The phylogenetic analysis of organelle genes revealed that the leafy sweet potato was closely related to the tetraploid wild species Ipomoea tabascana and the wild diploid species Ipomoea trifida.


Subject(s)
Genome, Chloroplast , Genome, Mitochondrial , Ipomoea batatas , Ipomoea , Ipomoea batatas/genetics , Phylogeny , Genome, Mitochondrial/genetics , Ipomoea/genetics , Genome, Chloroplast/genetics , Chloroplasts/genetics , Amino Acids/genetics , RNA, Transfer/genetics
18.
Mol Ther Nucleic Acids ; 35(1): 102135, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38404504

ABSTRACT

Adeno-associated viral (AAV) vectors are increasingly used as vehicles for gene delivery to treat hearing loss. However, lack of specificity of the transgene expression may lead to overexpression of the transgene in nontarget tissues. In this study, we evaluated the expression efficiency and specificity of transgene delivered by AAV-PHP.eB under the inner ear sensory cell-specific Myo15 promoter. Compared with the ubiquitous CAG promoter, the Myo15 promoter initiates efficient expression of the GFP fluorescence reporter in hair cells, while minimizing non-specific expression in other cell types of the inner ear and CNS. Furthermore, using the Myo15 promoter, we constructed an AAV-mediated therapeutic system with the coding sequence of OTOF gene. After inner ear injection, we observed apparent hearing recovery in Otof-/- mice, highly efficient expression of exogenous otoferlin, and significant improvement in the exocytosis function of inner hair cells. Overall, our results indicate that gene therapy mediated by the hair cell-specific Myo15 promoter has potential clinical application for the treatment of autosomal recessive deafness and yet for other hereditary hearing loss related to dysfunction of hair cells.

19.
Biology (Basel) ; 13(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38392319

ABSTRACT

Ammonium (NH4+) toxicity is ubiquitous in plants. To investigate the underlying mechanisms of this toxicity and bicarbonate (HCO3-)-dependent alleviation, wheat plants were hydroponically cultivated in half-strength Hoagland nutrient solution containing 7.5 mM NO3- (CK), 7.5 mM NH4+ (SA), or 7.5 mM NH4+ + 3 mM HCO3- (AC). Transcriptomic analysis revealed that compared to CK, SA treatment at 48 h significantly upregulated the expression of genes encoding fermentation enzymes (pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH)) and oxygen consumption enzymes (respiratory burst oxidase homologs, dioxygenases, and alternative oxidases), downregulated the expression of genes encoding oxygen transporters (PIP-type aquaporins, non-symbiotic hemoglobins), and those involved in energy metabolism, including tricarboxylic acid (TCA) cycle enzymes and ATP synthases, but upregulated the glycolytic enzymes in the roots and downregulated the expression of genes involved in the cell cycle and elongation. The physiological assay showed that SA treatment significantly increased PDC, ADH, and LDH activity by 36.69%, 43.66%, and 61.60%, respectively; root ethanol concentration by 62.95%; and lactate efflux by 23.20%, and significantly decreased the concentrations of pyruvate and most TCA cycle intermediates, the complex V activity, ATP content, and ATP/ADP ratio. As a consequence, SA significantly inhibited root growth. AC treatment reversed the changes caused by SA and alleviated the inhibition of root growth. In conclusion, NH4+ treatment alone may cause hypoxic stress in the roots, inhibit energy generation, suppress cell division and elongation, and ultimately inhibit root growth, and adding HCO3- remarkably alleviates the NH4+-induced inhibitory effects on root growth largely by attenuating the hypoxic stress.

20.
Lancet ; 403(10441): 2317-2325, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38280389

ABSTRACT

BACKGROUND: Autosomal recessive deafness 9, caused by mutations of the OTOF gene, is characterised by congenital or prelingual, severe-to-complete, bilateral hearing loss. However, no pharmacological treatment is currently available for congenital deafness. In this Article, we report the safety and efficacy of gene therapy with an adeno-associated virus (AAV) serotype 1 carrying a human OTOF transgene (AAV1-hOTOF) as a treatment for children with autosomal recessive deafness 9. METHODS: This single-arm, single-centre trial enrolled children (aged 1-18 years) with severe-to-complete hearing loss and confirmed mutations in both alleles of OTOF, and without bilateral cochlear implants. A single injection of AAV1-hOTOF was administered into the cochlea through the round window. The primary endpoint was dose-limiting toxicity at 6 weeks after injection. Auditory function and speech were assessed by appropriate auditory perception evaluation tools. All analyses were done according to the intention-to-treat principle. This trial is registered with Chinese Clinical Trial Registry, ChiCTR2200063181, and is ongoing. FINDINGS: Between Oct 19, 2022, and June 9, 2023, we screened 425 participants for eligibility and enrolled six children for AAV1-hOTOF gene therapy (one received a dose of 9 × 1011 vector genomes [vg] and five received 1·5 × 1012 vg). All participants completed follow-up visits up to week 26. No dose-limiting toxicity or serious adverse events occurred. In total, 48 adverse events were observed; 46 (96%) were grade 1-2 and two (4%) were grade 3 (decreased neutrophil count in one participant). Five children had hearing recovery, shown by a 40-57 dB reduction in the average auditory brainstem response (ABR) thresholds at 0·5-4·0 kHz. In the participant who received the 9 × 1011 vg dose, the average ABR threshold was improved from greater than 95 dB at baseline to 68 dB at 4 weeks, 53 dB at 13 weeks, and 45 dB at 26 weeks. In those who received 1·5 × 1012 AAV1-hOTOF, the average ABR thresholds changed from greater than 95 dB at baseline to 48 dB, 38 dB, 40 dB, and 55 dB in four children with hearing recovery at 26 weeks. Speech perception was improved in participants who had hearing recovery. INTERPRETATION: AAV1-hOTOF gene therapy is safe and efficacious as a novel treatment for children with autosomal recessive deafness 9. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Science and Technology Commission of Shanghai Municipality, and Shanghai Refreshgene Therapeutics.


Subject(s)
Dependovirus , Genetic Therapy , Humans , Genetic Therapy/methods , Dependovirus/genetics , Child , Male , Child, Preschool , Female , Adolescent , Infant , Genetic Vectors , Treatment Outcome , Deafness/genetics , Deafness/therapy , Mutation , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...