Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 755
Filter
1.
Environ Sci Ecotechnol ; 22: 100475, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39280591

ABSTRACT

The increase in bacterial antibiotic resistance poses a significant threat to the effectiveness of antibiotics, and there is growing evidence suggesting that global warming may speed up this process. However, the direct influence of temperature on the development of antibiotic resistance and the underlying mechanisms is not yet fully understood. Here we show that antibiotic resistance exhibits a nonlinear response to elevated temperatures under the combined stress of temperatures and antibiotics. We find that the effectiveness of gatifloxacin against Escherichia coli significantly diminishes at 42 °C, while resistance increases 256-fold at 27 °C. Additionally, the increased transcription levels of genes such as marA, ygfA, and ibpB with rising temperatures, along with gene mutations at different sites, explain the observed variability in resistance patterns. These findings highlight the complexity of antibiotic resistance evolution and the urgent need for comprehensive studies to understand and mitigate the effects of global warming on antibiotic resistance.

2.
J Thorac Dis ; 16(8): 5180-5189, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39268106

ABSTRACT

Background: The global incidence of pulmonary fungal diseases is on the rise. Individuals harboring underlying immunocompromised conditions such as human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), malignant tumors, or those who have undergone organ transplantation, among others, are particularly susceptible to fungal infections. However, in clinical practice, certain patients diagnosed with pulmonary fungal infections exhibit no discernible risk factors for immunosuppression. GATA2, a pivotal transcription factor governing hematopoiesis, is implicated in GATA2 deficiency, predisposing individuals to fungal infections. This study aims to scrutinize GATA2 variants in adult patients afflicted with pulmonary fungal infections devoid of recognized risk factors for immunosuppression. Methods: A cohort of adult patients (aged 18-65 years old, n=22) diagnosed with pulmonary fungal diseases lacking underlying immunosuppression risk factors, treated at Sun Yat-sen Memorial Hospital from January 2016 to December 2021, underwent Sanger sequencing of the GATA2 gene. Results: Among the 22 patients devoid of immunocompromised risk factors and diagnosed with pulmonary fungal diseases, 17 patients (77.3%) exhibited single nucleotide variants (SNVs) within the exons of the GATA2 gene. Notably, exon 3 variants were present in 7 cases (41.2%), exon 4 variants in 10 cases (58.8%), and exon 5 variants in 11 cases (64.7%), emerging as the most prevalent exonic variants within GATA2. Among the 17 patients harboring GATA2 SNVs, a total of 28 SNVs were identified. Of these, eight variants (NM_001145661.2:c.33G>A, NM_001145661.2:c.523C>T, NM_001145661.2:c.77A>G, NM_001145661.2:c.545C>T, NM_001145661.2:c.7G>A, NM_001145661.2:c.1406A>G, NM_001145661.2:c.977A>G, NM_001145661.2:c.742A>C) were identified as missense mutations with the potential to alter the structure and function of the GATA2 protein on the basis of multiple in silico predictive programs interpretation. One nonsense mutation (NM_001145661.2:c.664A>T) was classified as "likely pathogenic" according to 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. Conclusions: GATA2 variants are prevalent among patients afflicted with pulmonary fungal infections in the absence of traditional immunosuppressive risk factors. Further investigations are warranted to elucidate the impact of GATA2 variants on the expression and functionality of the GATA2 protein.

3.
Nat Commun ; 15(1): 8137, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289381

ABSTRACT

Efficient energy conversion using ions as carriers necessitates membranes that sustain high permselectivity in high salinity conditions, which presents a significant challenge. This study addresses the issue by manipulating the linkages in covalent-organic-framework membranes, altering the distribution of electrostatic potentials and thereby influencing the short-range interactions between ions and membranes. We show that a charge-neutral covalent-organic-framework membrane with ß-ketoenamine linkages achieves record permselectivity in high salinity environments. Additionally, the membrane retains its permselectivity under temperature gradients, providing a method for converting low-grade waste heat into electrical energy. Experiments reveal that with a 3 M KCl solution and a 50 K temperature difference, the membrane generates an output power density of 5.70 W m-2. Furthermore, guided by a short-range ionic screening mechanism, the membrane exhibits adaptable permselectivity, allowing reversible and controllable operations by finely adjusting charge polarity and magnitude on the membrane's channel surfaces via ion adsorption. Notably, treatment with K3PO4 solutions significantly enhances permselectivity, resulting in a giant output power density of 20.22 W m-2, a 3.6-fold increase over the untreated membrane, setting a benchmark for converting low-grade heat into electrical energy.

4.
Int J Biol Macromol ; 277(Pt 2): 134356, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089551

ABSTRACT

With the rapid advancement of flexible, portable devices, hydrogel electrolytes have gained considerable attention as potential replacements for conventional liquid electrolytes. A hydrogel electrolyte was synthesised by cross-linking acrylic acid (AA), acrylamide (AM), carboxymethyl cellulose (CMC), and zinc sulphate (ZnSO4). The formation of hydrogen bonds and chelate interactions between the P(AA-co-AM) polymer, CMC, and ZnSO4 created a robust network, enhancing the mechanical properties of the hydrogel electrolytes. Notably, the hydrogel electrolyte containing 0.6 % CMC demonstrated superior mechanical strength (compression strength of 1.22 MPa, tensile stress of 230 kPa, tensile strain of 424 %, adhesion strength of 1.98 MPa on wood). Additionally, the CMC/P(AA-co-AM) hydrogels exhibited commendable electrical performance (38 mS/cm) and a high gauge factor (2.9), enabling the precise detection of physiological activity signals through resistance measurements. The unique network structure of the hydrogel electrolyte also ensured a stable bonding interface between the electrode and the electrolyte. After 2000 charge-discharge cycles, the supercapacitor maintained good capacitance characteristics, with a capacitance retention rate of 71.21 % and a stable Coulombic efficiency of 98.85 %, demonstrating excellent cyclic stability. This study introduces a novel methodology for fabricating multifunctional all-solid-state supercapacitors and suggests that the hydrogel can significantly advance the development of wearable energy storage devices.


Subject(s)
Electric Capacitance , Electrolytes , Hydrogels , Wearable Electronic Devices , Electrolytes/chemistry , Hydrogels/chemistry , Electrochemical Techniques/methods , Electrodes , Carboxymethylcellulose Sodium/chemistry
5.
Mol Hortic ; 4(1): 29, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103914

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.

7.
Carbohydr Polym ; 343: 122484, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174103

ABSTRACT

Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.

8.
Analyst ; 149(18): 4623-4632, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39101528

ABSTRACT

The "antenna effect" is one of the most important energy transfer modes in lanthanide light-emitting polymers. In this study, novel luminescent nanostructured coordination polymers (Eu-PCP) were synthesized in one step using Eu3+ as the central metal ion and 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the organic ligand. The unique "antenna effect" observed between Eu3+ and TCPP leads to a substantial improvement in the electrochemiluminescence (ECL) emission efficiency. Eu-PCP exhibits good cathodic ECL characteristics. Additionally, Au@SnS2 nanosheets exhibit favorable electrical conductivity, biocompatibility, and a significant specific surface area. This makes them a suitable choice as substrate materials for the modification of electrode surfaces and capturing antigens. Being well known, the development of sensitive and rapid methods to detect chloramphenicol is essential for food safety. Based on this, we report a novel competitive electrochemiluminescence immunoassay to achieve ultra-sensitive and highly specific detection of chloramphenicol. The linear range was 0.0002-500 ng mL-1 and the detection limit was 0.09 pg mL-1. Apart from that, the experimental results proved that it provided a new analytical tool for the detection of antibiotic residues in food safety.


Subject(s)
Chloramphenicol , Electrochemical Techniques , Europium , Gold , Limit of Detection , Luminescent Measurements , Polymers , Porphyrins , Europium/chemistry , Chloramphenicol/analysis , Chloramphenicol/chemistry , Immunoassay/methods , Porphyrins/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Gold/chemistry , Polymers/chemistry , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Tin Compounds/chemistry , Animals , Coordination Complexes/chemistry
9.
J Am Chem Soc ; 146(33): 23075-23091, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39110018

ABSTRACT

Macrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers. Addressing this, our study explores the membrane interactions of stapled peptides, a subclass of macrocyclic peptides, using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. We conducted ssNMR measurements on ATSP-7041M, a prototypical stapled peptide, to understand its interaction with lipid membranes, leading to an MD-informed model for peptide membrane permeation. Our findings reveal that ATSP-7041M adopts a stable α-helical structure upon membrane binding, facilitated by a cation-π interaction between its phenylalanine side chain and the lipid headgroup. This interaction makes the membrane-bound state energetically favorable, facilitating membrane affinity and insertion. The bound peptide displayed asymmetric insertion depths, with the C-terminus penetrating deeper (approximately 9 Å) than the N-terminus (approximately 4.3 Å) relative to the lipid headgroups. Contrary to expectations, peptide dynamics was not hindered by membrane binding and exhibited rapid motions similar to cell-penetrating peptides. These dynamic interactions and peptide-lipid affinity appear to be crucial for membrane permeation. MD simulations indicated a thermodynamically stable transmembrane conformation of ATSP-7041M, reducing the energy barrier for translocation. Our study offers an in silico view of ATSP-7041M's translocation from the extracellular to the intracellular region, highlighting the significance of peptide-lipid interactions and dynamics in enabling peptide transit through membranes.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Tumor Suppressor Protein p53 , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Nuclear Magnetic Resonance, Biomolecular , Magnetic Resonance Spectroscopy
10.
Int J Biol Macromol ; 277(Pt 1): 133728, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39019700

ABSTRACT

Passive radiative cooling material of cellulose by coupling inorganic nanoparticles, have demonstrated competitive advantages in sustainably cooling buildings and constructions due to their voluminous availability, biodegradability, renewability, and natural origin. However, the weak stability of cellulose-inorganic nanoparticle materials when exposed to water or external forces remains a significant challenge that impedes their practical application. In this study, we proposed an easy-to-prepare, scalable, and robust cooling cellulose composite by coupling nano-SiO2 and cellulose acetate (CA) within cellulose fibers, using the mature pulping and paper process (filling of inorganic particles of nano-SiO2 and subsequent sizing of polymer of CA). More importantly, the CA molecules form the strong bonding with the cellulose molecules due to the high similarity of their molecular structure, which makes CA function as a "glue" to effectively fasten nano-SiO2 on the cellulose fibers. Correspondingly, our cellulose composite features desirable robustness and structural stability even undergoing mechanical beating and water-soaking treatments, demonstrating its excellent robustness and desirable adaptability to natural environments, such as wind and rain. As a result, despite undergoing water-soaking (for 40 days) or environmental exposure (for 90 days), the cooling cellulose composite still exhibits excellent solar reflectance (>95 %) and infrared thermal emissivity (>0.95 at 8-13 µm), enabling sub-ambient temperature (∼6.5 °C during daytime and ∼8 °C at nighttime) throughout the day. Our cooling cellulose composite demonstrates promising potential as an environmentally friendly, low-cost, and stable cooling material in our low-carbon society.


Subject(s)
Cellulose , Silicon Dioxide , Cellulose/chemistry , Cellulose/analogs & derivatives , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Nanocomposites/chemistry , Temperature
11.
mLife ; 3(2): 291-306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948140

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and ß-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to ß-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on ß-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with ß-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to ß-lactams. Furthermore, CIN fully restored the anti-MRSA activities of ß-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a ß-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.

12.
Small ; : e2404215, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973090

ABSTRACT

Aqueous nickel-ion batteries (ANIBs) as an emerging energy storage device attracted much attention owing to their multielectron redox reaction and dendrite-free Ni anode, yet their development is hindered by the divalent properties of Ni2+ and the lack of suitable cathode materials. Herein, a hydrated iron vanadate (Fe2V3O10.5∙1.5H2O, FOH) with a preferred orientation along the (200) plane is innovatively proposed and used as cathode material for ANIBs. The FOH cathode exhibits a remarkable capacity of 129.3 mAh g-1 at 50 mA g-1 and a super-high capacity retention of 95% at 500 mA g-1 after 700 cycles. The desirable Ni2+ storage capacity of FOH can be attributed to the preferentially oriented and tunnel structures, which offer abundant reaction active planes and a broad Ni2+ diffusion path, the abundant vacancies and high specific surface area further increase ion storage sites and accelerate ion diffusion in the FOH lattice. Furthermore, the Ni2+ storage mechanism and structural evolution in the FOH cathode are explored through ex situ XRD, ex situ Raman, ex situ XPS and other ex situ characteristics. This work opens a new way for designing novel cathode materials to promote the development of ANIBs.

13.
Plant J ; 119(4): 2080-2095, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860937

ABSTRACT

Stem is important for assimilating transport and plant strength; however, less is known about the genetic basis of its structural characteristics. In this study, a high-throughput method, "LabelmeP rice" was developed to generate 14 traits related to stem regions and vascular bundles, which allows the establishment of a stem cross-section phenotype dataset containing anatomical information of 1738 images from hand-cut transections of stems collected from 387 rice germplasm accessions grown over two successive seasons. Then, the phenotypic diversity of the rice accessions was evaluated. Genome-wide association studies identified 94, 83, and 66 significant single nucleotide polymorphisms (SNPs) for the assayed traits in 2 years and their best linear unbiased estimates, respectively. These SNPs can be integrated into 29 quantitative trait loci (QTL), and 11 of them were common in 2 years, while correlated traits shared 19. In addition, 173 candidate genes were identified, and six located at significant SNPs were repeatedly detected and annotated with a potential function in stem development. By using three introgression lines (chromosome segment substitution lines), four of the 29 QTLs were validated. LOC_Os01g70200, located on the QTL uq1.4, is detected for the area of small vascular bundles (SVB) and the rate of large vascular bundles number to SVB number. Besides, the CRISPR/Cas9 editing approach has elucidated the function of the candidate gene LOC_Os06g46340 in stem development. In conclusion, the results present a time- and cost-effective method that provides convenience for extracting rice stem anatomical traits and the candidate genes/QTL, which would help improve rice.


Subject(s)
Genome-Wide Association Study , Oryza , Phenotype , Plant Stems , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Oryza/genetics , Oryza/growth & development , Quantitative Trait Loci/genetics , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/anatomy & histology , Genome, Plant/genetics
14.
Int J Biol Macromol ; 274(Pt 2): 133466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942411

ABSTRACT

The prevalence and impact of type 2 diabetes mellitus (T2DM) is a major global health problem. The treatment process of T2DM is long and difficult to cure. Therefore, it is necessary to explore alternative or complementary methods to deal with the various challenges brought by T2DM. Natural plant polysaccharides (NPPs) have certain potential in the treatment of T2DM. However, many studies have not considered the relationship between the structure of NPPs and their anti-T2DM activity. This paper reviews the relevant anti-T2DM mechanisms of NPPs, including modulation of insulin action, promotion of glucose metabolism and modulation of postprandial glucose levels, anti-inflammation and modulation of gut microbiota (GM) and metabolism. This paper provides an in-depth study of the conformational relationships of NPPs and facilitates the development of anti-T2DM drugs or dietary supplements with NPPs.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Polysaccharides , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Humans , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry
15.
Environ Sci Pollut Res Int ; 31(30): 42779-42791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38878241

ABSTRACT

Dissolved oxygen (DO) levels and carbon-to-nitrogen (C/N) ratio affect nitrous oxide (N2O) emissions by influencing the physiological and ecological dynamics of nitrifying and denitrifying microbial communities in activated sludge systems. For example, Nitrosomonas is a common N2O producing nitrifying bacteria in wastewater treatment plants (WWTPs), and DO conditions can affect the N2O production capacity. Previous studies have reported N2O emission characteristics under adequate DO and C/N conditions in A/O WWTPs. However, in actual operation, owing to economic and managerial factors, some WWTPs have a long-term state of low DO levels in oxic tanks and low influent C/N. Research on N2O emission characteristics in low DO-limited and low C/N ratio WWTPs is limited. This study investigated N2O emissions and the corresponding shifts in microorganisms within an anoxic-oxic (A/O) WWTP over 9-month. Quantitative PCR was used to assess the abundance of ten functional genes related to nitrification and denitrification processes, and high-throughput sequencing of the 16S rRNA gene was employed to determine the composition change of microorganisms. The findings revealed that 1) the average N2O emission factor was 1.07% in the studied WWTP; 2) the DO-limited oxic tank primarily contributed to N2O; 3) NO2-, TOC, and C/N ratios were key factors for dissolved N2O in the aerobic tank; and 4) Nitrosomonas and Terrimonas exhibited a robust correlation with N2O emissions. This research provides data references for estimating N2O emission factors and developing N2O reduction policies in WWTPs with DO-limited and low C/N ratios.


Subject(s)
Carbon , Nitrogen , Nitrous Oxide , Oxygen , Waste Disposal, Fluid , Wastewater , Nitrous Oxide/analysis , Wastewater/microbiology , Wastewater/chemistry , Denitrification , RNA, Ribosomal, 16S , Microbiota , Nitrification
16.
Pharmaceutics ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38931860

ABSTRACT

Astatine-211 (211At) has emerged as a promising radionuclide for targeted alpha therapy of cancer by virtue of its favorable nuclear properties. However, the limited in vivo stability of 211At-labeled radiopharmaceuticals remains a major challenge. This review provides a comprehensive overview of the current strategies for 211At radiolabeling, including nucleophilic and electrophilic substitution reactions, as well as the recent advances in the development of novel bifunctional coupling agents and labeling approaches to enhance the stability of 211At-labeled compounds. The preclinical and clinical applications of 211At-labeled radiopharmaceuticals, including small molecules, peptides, and antibodies, are also discussed. Looking forward, the identification of new molecular targets, the optimization of 211At production and quality control methods, and the continued evaluation of 211At-labeled radiopharmaceuticals in preclinical and clinical settings will be the key to realizing the full potential of 211At-based targeted alpha therapy. With the growing interest and investment in this field, 211At-labeled radiopharmaceuticals are poised to play an increasingly important role in future cancer treatment.

17.
Polymers (Basel) ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932036

ABSTRACT

Breathable membranes with micropores enable the transfer of gas molecules while blocking liquids and solids, and have a wide range of applications in medical, industrial, environmental, and energy fields. Breathability is highly influenced by the nature of a material, pore size, and pore structure. Preparation methods and the incorporation of functional materials are responsible for the variety of physical properties and applications of breathable membranes. In this review, the preparation methods of breathable membranes, including blown film extrusion, cast film extrusion, phase separation, and electrospinning, are discussed. According to the antibacterial, hydrophobic, thermal insulation, conductive, and adsorption properties, the application of breathable membranes in the fields of electronics, medicine, textiles, packaging, energy, and the environment are summarized. Perspectives on the development trends and challenges of breathable membranes are discussed.

18.
J Alzheimers Dis ; 100(1): 119-126, 2024.
Article in English | MEDLINE | ID: mdl-38848192

ABSTRACT

Background: Chronic intake of extra virgin olive oil is beneficial for brain health and protects from age-related cognitive decline and dementia, whose most common clinical manifestation is Alzheimer's disease. Besides the classical pathologic deposits of amyloid beta peptides and phosphorylated tau proteins, another frequent feature of the Alzheimer's brain is neuroinflammation. Objective: In the current study, we assessed the effect that extra virgin olive oil has on neuroinflammation when administered to a mouse model of the disease. Methods: Triple transgenic mice were randomized to receive a diet enriched with extra virgin olive oil or regular diet for 8 weeks. At the end of this treatment period the expression level of several inflammatory biomarkers was assessed in the central nervous system. Results: Among the 79 biomarkers measured, compared with the control group, mice receiving the extra virgin olive oil had a significant reduction in MIP-2, IL-17E, IL-23, and IL-12p70, but an increase in IL-5. To validate these results, specific ELISA kits were used for each of them. Confirmatory results were obtained for MIP-2, IL-17E, IL-23, and IL-12-p70. No significant differences between the two groups were observed for IL-5. Conclusions: Our results demonstrate that chronic administration of extra virgin olive oil has a potent anti-neuroinflammatory action in a model of Alzheimer's disease. They provide additional pre-clinical support and novel mechanistic insights for the beneficial effect that this dietary intervention has on brain health and dementia.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Mice, Transgenic , Olive Oil , Animals , Olive Oil/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/diet therapy , Mice , Neuroinflammatory Diseases/drug therapy , Amyloid beta-Protein Precursor/genetics , Humans , Brain/pathology , Brain/drug effects , Brain/metabolism , Biomarkers , Presenilin-1/genetics , Male , Cytokines/metabolism
19.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792140

ABSTRACT

Aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 are widely found in agriculture products, and AFB1 is considered one of the most toxic and harmful mycotoxins. Herein, a highly sensitive (at the pg mL-1 level) and group-specific enzyme-linked immunosorbent assay (ELISA) for the detection of AFB1 in agricultural and aquiculture products was developed. The AFB1 derivative containing a carboxylic group was synthesized and covalently linked to bovine serum albumin (BSA). The AFB1-BSA conjugate was used as an immunogen to immunize mice. A high-quality monoclonal antibody (mAb) against AFB1 was produced by hybridoma technology, and the mAb-based ELISA for AFB1 was established. IC50 and limit of detection (LOD) of the ELISA for AFB1 were 90 pg mL-1 and 18 pg mL-1, respectively. The cross-reactivities (CRs) of the assay with AFB2, AFG1, and AFG2 were 23.6%, 42.5%, and 1.9%, respectively, revealing some degree of group specificity. Corn flour, wheat flour, and crab roe samples spiked with different contents of AFB1 were subjected to ELISA procedures. The recoveries and relative standard deviation (RSD) of the ELISA for AFB1 in spiked samples were 78.3-116.6% and 1.49-13.21% (n = 3), respectively. Wheat flour samples spiked with the mixed AF (AFB1, AFB2, AFG1, AFG2) standard solution were measured by ELISA and LC-MS/MS simultaneously. It was demonstrated that the proposed ELISA can be used as a screening method for evaluation of AFs (AFB1, AFB2, AFG1, AFG2) in wheat flour samples.


Subject(s)
Aflatoxin B1 , Enzyme-Linked Immunosorbent Assay , Food Contamination , Animals , Mice , Aflatoxin B1/analysis , Aflatoxin B1/immunology , Agriculture , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Flour/analysis , Food Contamination/analysis , Limit of Detection , Serum Albumin, Bovine/chemistry , Zea mays/chemistry , Zea mays/microbiology
20.
PLoS One ; 19(5): e0303997, 2024.
Article in English | MEDLINE | ID: mdl-38781252

ABSTRACT

BACKGROUND: The Chinese government has been promoting commercial medical insurance (CMI) in recent decades as it plays an increasingly important role in addressing disease burden, health inequities, and other healthcare challenges. However, compared with developed countries, the CMI is still less fledged with low coverage. OBJECTIVE: This study aims to explore the factors associated with enrollment in CMI, with regards to explicit characteristics (including sociodemographic characteristics and family economic status), latent characteristics (including social security status), and the global incentive compatibility index (including health status), to inform the design of CMI to improve its coverage in China. METHODS: Based on the principal-agent model, we summarized and classified the factors associated with the enrollment in CMI, and then analyzed the data generated from the Chinese General Social Survey in 2015,2018 and 2021 respectively. A comparison of factors regarding sociodemographic characteristics, family economic status, social security status, and health status was conducted between individuals enrolled and unenrolled in CMI using Mann-Whitney U test and Chi-square test. Binary logistic regression analysis was used to explore factors influencing the enrollment status of CMI. RESULTS: Of all individuals, the proportion of enrolled individuals shows an increasing trend year by year, with 8.7%,11.8% and 14.1% enrolled in CMI in 2015,2018 and 2021, respectively. The binary regression analysis further suggested that the factors associated with the enrollment in CMI were consistent in 2015,2018 and 2021.We found that individuals divorced, obese, who had a higher level of education, had non-agricultural household registration, perceived themselves as the upper social status, conducted daily exercise, had more family houses, had a car, had investment activities, or did not have basic health insurance were more likely to be enrolled in CMI. CONCLUSIONS: We identified multidimensional factors associated with the enrollment of CMI, which help inform the government and insurance industry to improve the coverage of CMI.


Subject(s)
Insurance, Health , Humans , China , Insurance, Health/economics , Female , Male , Adult , Middle Aged , Surveys and Questionnaires , Socioeconomic Factors , Young Adult , Adolescent , Aged , Health Status
SELECTION OF CITATIONS
SEARCH DETAIL