Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Immunol ; 15: 1382417, 2024.
Article in English | MEDLINE | ID: mdl-38966640

ABSTRACT

Background: The Prognostic Nutritional Index (PNI) has become an important predictive tool for assessing patients' nutritional status and immune competence. It is widely used in prognostic evaluations for various cancer patients. However, the prognostic relevance of the Prognostic Nutritional Index (PNI) in gastric or gastro-esophageal junction cancer patients (GC/GEJC) undergoing immune checkpoint inhibitors (ICIs) treatment remains unclear. This meta-analysis aimed to determine the prognostic impact of PNI in this specific patient cohort. Methods: We conducted a thorough literature search, covering prominent databases such as PubMed, Embase, Web of Science, SpringerLink, and the Cochrane Library. The search spanned from the inception of these databases up to December 5, 2023. Employing the 95% confidence interval and Hazard Ratio (HR), the study systematically evaluated the relationship between PNI and key prognostic indicators, including the objective remission rate (ORR), disease control rate (DCR), overall survival (OS) and progression-free survival (PFS) in GC/GEJC patients undergoing ICI treatment. Results: Eight studies comprising 813 eligible patients were selected. With 7 studies consistently demonstrating superior Overall Survival (OS) in the high-Prognostic Nutritional Index (PNI) group compared to their low-PNI counterparts (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Furthermore, the results derived from 6 studies pointed out that the significant correlation between he low-PNI and poorer progression-free survival (PFS) (HR 0.58, 95% CI: 0.47-0.71, P<0.001). Subgroup analyses were performed to validate the robustness of the results. In addition, we conducted a meta-analysis of three studies examining the correlation between PNI and objective response rate/disease control rate (ORR/DCR) and found that the ORR/DCR was significantly superior in the high PNI group (ORR: RR: 1.24, P=0.002; DCR: RR: 1.43, P=0.008). Conclusion: This meta-analysis indicates that the low-PNI in GC/GEJC patients undergoing ICI treatment is significantly linked to worse OS and PFS. Therefore, PNI can serve as a prognostic indicator of post-treatment outcomes in patients with GC receiving ICIs. Further prospective studies are required to assess the reliability of these findings. Systematic review registration: https://inplasy.com/, identifier INPLASY202450133.


Subject(s)
Esophageal Neoplasms , Esophagogastric Junction , Immune Checkpoint Inhibitors , Stomach Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Stomach Neoplasms/immunology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/mortality , Esophagogastric Junction/pathology , Prognosis , Nutrition Assessment , Nutritional Status
2.
Front Oncol ; 14: 1367990, 2024.
Article in English | MEDLINE | ID: mdl-38912061

ABSTRACT

Objectives: The prognostic relevance of the platelet-to-lymphocyte ratio (PLR) in gastric cancer (GC) patients undergoing immune checkpoint inhibitor (ICI) treatment remains unclear. This meta-analysis aimed to determine the prognostic impact of PLR in this specific patient cohort. Methods: We searched the PubMed, Cochrane Library, CNKI, and EMBASE databases, including literature published up to September 2023, to investigate the prognostic implications of PLR in patients with gastric cancer undergoing immune checkpoint inhibitor therapy. Outcome measures encompassed overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rates (DCR). Results: Nine studies from seven articles comprising 948 eligible patients were selected. The results revealed a significant correlation between elevated PLR and poorer OS and progression-free survival (PFS) (OS: HR 1.67, 95% CI 1.39-2.00, p < 0.001; PFS: HR 1.51, 95% CI 1.29-1.76, p < 0.001). Subgroup analyses were performed to validate the robustness of the results. Moreover, a meta-analysis of four studies investigating the correlation between the PLR in gastric cancer (GC) patients and the objective response rate/disease control rate (ORR/DCR), showed no significant association between the PLR and ORR/DCR (ORR: RR = 1.01, p = 0.960; DCR: RR = 0.96, p = 0.319). Conclusions: This meta-analysis indicates that elevated PLR in GC patients undergoing ICI treatment is significantly linked to worse OS and PFS. Therefore, PLR can serve as a prognostic indicator of post-treatment outcomes in patients with GC receiving ICIs. Further prospective studies are required to assess the reliability of these findings. Systematic review registration: https://inplasy.com/, identifier INPLASY2023120103.

3.
Redox Biol ; 73: 103207, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805974

ABSTRACT

Although 5-fluorouracil (5-FU) is the primary chemotherapy treatment for colorectal cancer (CRC), its efficacy is limited by drug resistance. Ferroptosis activation is a promising treatment for 5-FU-resistant cancer cells; however, potential therapeutic targets remain elusive. This study investigated ferroptosis vulnerability and dihydroorotate dehydrogenase (DHODH) activity using stable, 5-FU-resistant CRC cell lines and xenograft models. Ferroptosis was characterized by measuring malondialdehyde levels, assessing lipid metabolism and peroxidation, and using mitochondrial imaging and assays. DHODH function is investigated through gene knockdown experiments, tumor behavior assays, mitochondrial import reactions, intramitochondrial localization, enzymatic activity analyses, and metabolomics assessments. Intracellular lipid accumulation and mitochondrial DHODH deficiency led to lipid peroxidation overload, weakening the defense system of 5-FU-resistant CRC cells against ferroptosis. DHODH, primarily located within the inner mitochondrial membrane, played a crucial role in driving intracellular pyrimidine biosynthesis and was redistributed to the cytosol in 5-FU-resistant CRC cells. Cytosolic DHODH, like its mitochondrial counterpart, exhibited dihydroorotate catalytic activity and participated in pyrimidine biosynthesis. This amplified intracellular pyrimidine pools, thereby impeding the efficacy of 5-FU treatment through molecular competition. These findings contribute to the understanding of 5-FU resistance mechanisms and suggest that ferroptosis and DHODH are promising therapeutic targets for patients with CRC exhibiting resistance to 5-FU.


Subject(s)
Colorectal Neoplasms , Dihydroorotate Dehydrogenase , Drug Resistance, Neoplasm , Fluorouracil , Mitochondria , Oxidoreductases Acting on CH-CH Group Donors , Dihydroorotate Dehydrogenase/metabolism , Fluorouracil/pharmacology , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Mice , Animals , Cell Line, Tumor , Xenograft Model Antitumor Assays , Lipid Peroxidation/drug effects
4.
Clin. transl. oncol. (Print) ; 26(4): 1001-1011, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-VR-63

ABSTRACT

Purpose: To establish a nomogram for predicting the overall survival (OS) in patients with gastric cancer (GC) based on inflammatory, nutritional and pathological factors. Methods: GC patients underwent curative gastrectomy from January 2012 to June 2017 in our hospital were included, and were classified into training set and validation set with a ratio of 7:3. Then variables associated with OS were analyzed using univariate and multivariate Cox regression analysis. Nomograms predicting OS were built using variables from multivariable Cox models. Finally, Kaplan–Meier curve and Log-rank test were also conducted to analyze the 1-yr, 3-yr and 5-yr OS to validate the efficiency of risk stratification of the nomogram. Results: A total of 366 GC patients were included. After univariate and multivariate Cox regression analysis, age (HR = 1.52, 95% CI = 1.01–2.30, P = 0.044), CA50 (HR = 1.90, 95% CI = 1.12–3.21, P = 0.017), PNI (HR = 1.65, 95% CI = 1.13–2.39, P = 0.009), SII (HR = 1.46, 95% CI = 1.03–2.08, P = 0.036), T stage (HR = 2.26, 95% CI = 1.01–5.05, P = 0.048; HR = 7.24, 95% CI = 3.64–14.40, P < 0.001) were independent influencing factors on the survival time of GC patients. Five factors including CEA, prognostic nutritional index (PNI), systemic immune-inflammation index (SII), ln (tumor size), T stage, and N stage were identified and entered the nomogram, which showed good discrimination and calibration in both sets. On internal validation, 1-yr, 3-yr and 5-yr nomogram demonstrated a good discrimination with an area under the ROC curve (AUC) of 0.77, 0.84 and 0.86, respectively. The AUC for 1-yr, 3-yr and 5-yr nomogram in validation set was 0.77, 0.79 and 0.81, respectively. The OS in low risk group of training cohort and validation cohort was significantly higher than that of intermediate risk group and high risk group, respectively...(AU)


Subject(s)
Humans , Male , Female , Nomograms , Gastrectomy , Stomach Neoplasms/surgery , Prognosis , Area Under Curve
5.
Sci Rep ; 14(1): 6655, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509147

ABSTRACT

Tripartite motif-containing protein 7 (TRIM7), as an E3 ligase, plays an important regulatory role in various physiological and pathological processes. However, the role of TRIM7 in gastric cancer (GC) is still undefined. Our study detected the expression of TRIM7 in clinical specimens and investigated the regulatory effect and molecular mechanism of TRIM7 on GC progression through in vitro and in vivo experiments. Our finding showed that TRIM7 was significantly downregulated in GC, and patients with high expression of TRIM7 showed long overall survival. Both in vitro and in vivo experiments showed that TRIM7 dramatically suppressed the malignant progression of GC. Further investigation showed that ferroptosis was the major death type mediated by TRIM7. Mechanistically, TRIM7 interacted with SLC7A11 through its B30.2/SPRY domain and promoted Lys48-linked polyubiquitination of SLC7A11, which effectively suppressing SLC7A11/GPX4 axis and inducing ferroptosis in GC cells. In vivo experiments and correlation analysis based on clinical specimens further confirmed that TRIM7 inhibited tumor growth through suppressing SLC7A11/GPX4 axis. In conclusion, our investigation demonstrated for the first time that TRIM7, as a tumor suppressor, induced ferroptosis via targeting SLC7A11 in GC, which provided a new strategy for the molecular therapy of GC by upregulating TRIM7.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , Cell Transformation, Neoplastic , Carcinogenesis , Ubiquitination , Amino Acid Transport System y+/genetics , Tripartite Motif Proteins/genetics
6.
World J Gastroenterol ; 30(5): 485-498, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38414591

ABSTRACT

BACKGROUND: Gastric cancer (GC) is associated with high mortality rates. Bile acids (BAs) reflux is a well-known risk factor for GC, but the specific mechanism remains unclear. During GC development in both humans and animals, BAs serve as signaling molecules that induce metabolic reprogramming. This confers additional cancer phenotypes, including ferroptosis sensitivity. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression. However, it is not fully defined if BAs can influence GC progression by modulating ferroptosis. AIM: To reveal the mechanism of BAs regulation in ferroptosis of GC cells. METHODS: In this study, we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis. We used gain and loss of function assays to examine the impacts of farnesoid X receptor (FXR) and BTB and CNC homology 1 (BACH1) overexpression and knockdown to obtain further insights into the molecular mechanism involved. RESULTS: Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells. This effect correlated with increased glutathione (GSH) concentrations, a reduced GSH to oxidized GSH ratio, and higher GSH peroxidase 4 (GPX4) expression levels. Subsequently, we confirmed that BAs exerted these effects by activating FXR, which markedly increased the expression of GSH synthetase and GPX4. Notably, BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR. Finally, our results suggested that FXR could significantly promote GC cell proliferation, which may be closely related to its anti-ferroptosis effect. CONCLUSION: This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSH-GPX4 axis in GC cells. This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.


Subject(s)
Ferroptosis , Stomach Neoplasms , Animals , Humans , Bile Acids and Salts , Signal Transduction
7.
Front Endocrinol (Lausanne) ; 15: 1338147, 2024.
Article in English | MEDLINE | ID: mdl-38375198

ABSTRACT

Background: The obesity epidemic has been on the rise due to changes in living standards and lifestyles. To combat this issue, sleeve gastrectomy (SG) has emerged as a prominent bariatric surgery technique, offering substantial weight reduction. Nevertheless, the mechanisms that underlie SG-related bodyweight loss are not fully understood. Methods: In this study, we conducted a collection of preoperative and 3-month postoperative serum and fecal samples from patients who underwent laparoscopic SG at the First Affiliated Hospital of Shandong First Medical University (Jinan, China). Here, we took an unbiased approach of multi-omics to investigate the role of SG-altered gut microbiota in anti-obesity of these patients. Non-target metabolome sequencing was performed using the fecal and serum samples. Results: Our data show that SG markedly increased microbiota diversity and Rikenellaceae, Alistipes, Parabacteroides, Bactreoidales, and Enterobacteraies robustly increased. These compositional changes were positively correlated with lipid metabolites, including sphingolipids, glycerophospholipids, and unsaturated fatty acids. Increases of Rikenellaceae, Alistipes, and Parabacteroide were reversely correlated with body mass index (BMI). Conclusion: In conclusion, our findings provide evidence that SG induces significant alterations in the abundances of Rikenellaceae, Alistipes, Parabacteroides, and Bacteroidales, as well as changes in lipid metabolism-related metabolites. Importantly, these changes were found to be closely linked to the alleviation of obesity. On the basis of these findings, we have identified a number of microbiotas that could be potential targets for treatment of obesity.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Humans , Lipid Metabolism , Obesity/surgery , Bariatric Surgery/methods , Gastrectomy/methods
8.
Eur J Med Res ; 29(1): 47, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212810

ABSTRACT

BACKGROUND: This study was designed to clarify the function and potential mechanism of gentiopicroside (GPS) in regulating the malignant progression of gastric cancer (GC) through in vitro cellular experiments and in vivo animal models. METHODS: AGS and HGC27 cells were divided into control group and GPS treatment groups (50 µM and 100 µM). Then, the cellular proliferation, colony formation, migration, invasion, and apoptosis were detected, respectively. Transmission electron microscope (TEM) was used to observe the mitochondrial changes, and the mitochondrial membrane potential (MMP) was determined using the JC-1 commercial kit. Network pharmacology analysis was utilized to screen the potential molecule that may be related to the GPS activity on GC cells, followed by validation tests using Western blot in the presence of specific activator. In addition, xenografted tumor model was established using BALB/c nude mice via subcutaneous injection of HGC27 cells, along with pulmonary metastasis model. Then, the potential effects of GPS on the tumor growth and metastasis were detected by immunohistochemistry (IHC) and HE staining. RESULTS: GPS inhibited the proliferation, invasion and migration of GC cell lines in a dose-dependent manner. Besides, it could induce mitochondrial apoptosis. Epidermal growth factor receptor (EGFR) may be a potential target for GPS action in GC by network pharmacological analysis. GPS inhibits activation of the EGFR/PI3K/AKT axis by reducing EGFR expression. In vivo experiments indicated that GPS induced significant decrease in tumor volume, and it also inhibited the pulmonary metastasis. For the safety concerns, GPS caused no obvious toxicities to the heart, liver, spleen, lung and kidney tissues. IHC staining confirmed GPS downregulated the activity of EGFR/PI3K/AKT. CONCLUSIONS: Our investigation demonstrated for the first time that GPS could inhibit GC malignant progression by targeting the EGFR/PI3K/AKT signaling pathway. This study indicated that GPS may be serve as a safe anti-tumor drug for further treatment of GC.


Subject(s)
Iridoid Glucosides , Proto-Oncogene Proteins c-akt , Stomach Neoplasms , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Cell Line, Tumor , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/pharmacology , ErbB Receptors/therapeutic use , Cell Proliferation , Apoptosis
9.
Clin Transl Oncol ; 26(4): 1001-1011, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37996667

ABSTRACT

PURPOSE: To establish a nomogram for predicting the overall survival (OS) in patients with gastric cancer (GC) based on inflammatory, nutritional and pathological factors. METHODS: GC patients underwent curative gastrectomy from January 2012 to June 2017 in our hospital were included, and were classified into training set and validation set with a ratio of 7:3. Then variables associated with OS were analyzed using univariate and multivariate Cox regression analysis. Nomograms predicting OS were built using variables from multivariable Cox models. Finally, Kaplan-Meier curve and Log-rank test were also conducted to analyze the 1-yr, 3-yr and 5-yr OS to validate the efficiency of risk stratification of the nomogram. RESULTS: A total of 366 GC patients were included. After univariate and multivariate Cox regression analysis, age (HR = 1.52, 95% CI = 1.01-2.30, P = 0.044), CA50 (HR = 1.90, 95% CI = 1.12-3.21, P = 0.017), PNI (HR = 1.65, 95% CI = 1.13-2.39, P = 0.009), SII (HR = 1.46, 95% CI = 1.03-2.08, P = 0.036), T stage (HR = 2.26, 95% CI = 1.01-5.05, P = 0.048; HR = 7.24, 95% CI = 3.64-14.40, P < 0.001) were independent influencing factors on the survival time of GC patients. Five factors including CEA, prognostic nutritional index (PNI), systemic immune-inflammation index (SII), ln (tumor size), T stage, and N stage were identified and entered the nomogram, which showed good discrimination and calibration in both sets. On internal validation, 1-yr, 3-yr and 5-yr nomogram demonstrated a good discrimination with an area under the ROC curve (AUC) of 0.77, 0.84 and 0.86, respectively. The AUC for 1-yr, 3-yr and 5-yr nomogram in validation set was 0.77, 0.79 and 0.81, respectively. The OS in low risk group of training cohort and validation cohort was significantly higher than that of intermediate risk group and high risk group, respectively. CONCLUSIONS: We established a nomogram based on PNI, SII and pathological factors for predicting OS in GC patients. In addition, its efficiency was validated by validation set and stratified analysis.


Subject(s)
Nomograms , Stomach Neoplasms , Humans , Area Under Curve , Gastrectomy , Hospitals , Inflammation , Stomach Neoplasms/surgery , Prognosis
10.
Front Pharmacol ; 13: 1016635, 2022.
Article in English | MEDLINE | ID: mdl-36339532

ABSTRACT

Continuously rising trends in diabetes render this disease spectrum an epidemic proportion worldwide. As the disease progresses, the pathological effects of diabetes may impair the normal function of several vital organs, eventually leading to increase the risk of other diabetic comorbidities with advanced fibrosis such as non-alcoholic fatty liver disease, diabetic cardiomyopathy, and diabetic kidney disease. Currently, lifestyle changes and drug therapies of hypoglycemic and lipid-lowering are effective in improving multi-organ function, but therapeutic efficacy is difficult to maintain due to poor compliance and drug reactions. Bariatric surgery, including sleeve gastrectomy and Roux-en-Y gastric bypass surgery, has shown better results in terms of prognosis for diabetes through long-term follow-up. Moreover, bariatric surgery has significant long-term benefits on the function of the heart, liver, kidneys, and other organs through mechanisms associated with reversal of tissue fibrosis. The aim of this review is to describe the impact of type 2 diabetes mellitus on hepatic, cardiac and renal fibrosis and to summarize the potential mechanisms by which bariatric surgery improves multiple organ function, particularly reversal of fibrosis.

11.
Front Oncol ; 12: 813852, 2022.
Article in English | MEDLINE | ID: mdl-35898887

ABSTRACT

Chemoresistance against 5-fluorouracil (5-FU) is a major issue for colorectal cancer (CRC) patients. Increasing evidence for the roles of CD147 in glycolipid metabolic reprogramming and chemoresistance of tumor cells has emerged in recent years. However, whether CD147 contributes to 5-FU resistance in CRC and the role of abnormal glycolipid metabolism in this process remain poorly understood. We analyzed CD147 expression in primary tumor samples of CRC patients and found that upregulated CD147 correlated with decreased 5-FU chemosensitivity and an unfavorable prognosis of CRC patients. Moreover, in vivo and in vitro experiments confirmed that CD147 regulates glycolipid metabolism through two separate pathways. Mechanistically, CD147 upregulates HIF-1α-mediated glycolysis by activating the PI3K/AKT/mTOR pathway and CD147 also attenuates PPARα-mediated fatty acid oxidation by activation of the MAPK pathway. Most importantly, we found that CD147 confers 5-FU resistance in CRC via these glycolipid metabolic signatures. Our results demonstrated that CD147 is a potential 5-FU resistance biomarker for CRC patients and a candidate therapeutic target to restore 5-FU sensitivity of 5-FU-resistant CRC by remodeling glycolipid metabolism.

12.
Oxid Med Cell Longev ; 2022: 4608914, 2022.
Article in English | MEDLINE | ID: mdl-35498125

ABSTRACT

Diabetic cardiomyopathy (DCM) can develop in diabetes mellitus and is a major cause of morbidity and mortality. Surgical bariatric surgery procedures, such as sleeve gastrectomy (SG), result in remission of type 2 diabetes and have benefits regarding systolic and diastolic myocardial function. The NLR family pyrin domain containing 3 (NLRP3) inflammasome appears to participate in the development of DCM. However, whether SG surgery affects myocardial NLRP3 inflammasome-related pyroptosis to improve cardiac function remains unclear. This study was aimed at investigating the effect of SG surgery on NLRP3-associated pyroptosis in rats with DCM. We also examined cellular phenotypes and molecular mechanisms in high glucose-stimulated myocytes. The rat model of DCM was established by high-fat diet feeding and low-dose streptozotocin injection. We observed a metabolic benefit of SG, including a reduced body weight, food intake, and blood glucose levels and restored glucose tolerance and insulin sensitivity postoperatively. We observed a marked decline in glucose uptake in rats with DCM, and this was restored after SG. Also, SG alleviated the dysfunction of myocardial contraction and diastole, delayed the progression of DCM, and reduced the NLRP3 inflammasome-mediated myocardial pyroptosis in vivo. H9c2 cardiomyocytes showed membrane disruption and DNA damage under a high glucose stimulus, which suggested myocardial pyroptosis. Using a ROS scavenger or chloride channel blocker in vitro restored myocardial NLRP3-mediated pyroptosis. Furthermore, we found that chloride efflux acted downstream of ROS generation. In conclusion, SG may ameliorate or even reverse the progression of DCM. Our study provides evidence that the SG operation alleviates NLRP3 inflammasome dysregulation in DCM. Clearance of ROS overburden and suppression of chloride efflux due to SG might act as the proximal event before inhibition of NLRP3 inflammasome in the myocardium, thus contributing to morphological and functional alleviation of DCM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Chlorides , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/etiology , Gastrectomy , Glucose/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Reactive Oxygen Species/metabolism
13.
Front Physiol ; 13: 837798, 2022.
Article in English | MEDLINE | ID: mdl-35360240

ABSTRACT

Diabetic cardiomyopathy (DCM) is characterized by impaired diastolic and systolic myocardial performance and is a major cause of morbidity and mortality in patients with diabetes. Surgical bariatric procedures, such as sleeve gastrectomy (SG), result in remission of type 2 diabetes (T2DM) and have benefits with myocardial function. Maintaining cardiac mitochondrial homeostasis is a promising therapeutic strategy for DCM. However, whether SG surgery affects mitochondrial function and its underlying mechanism remains unclear. This study aimed to investigate the effect of SG surgery on mitochondrial homeostasis and intracellular oxidative stress in rats with DCM. We also examined cellular phenotypes and molecular mechanisms in high glucose and high fat-stimulated myocytes. The rat model of DCM was established by high-fat diet feeding and low-dose streptozotocin injection. We observed a remarkably metabolic benefit of SG, including a reduced body weight, food intake, blood glucose levels, and restored glucose tolerance and insulin sensitivity post-operatively. Also, SG ameliorated the pathological cardiac hypertrophy, myocardial fibrosis and the dysfunction of myocardial contraction and diastole, consequently delayed the progression of DCM. Also, SG restored the mitochondrial dysfunction and fragmentation through the AMPK signaling activation mediated nuclear receptor subfamily 4 group A member 1 (NR4A1)/DRP1 suppression in vivo. H9c2 cardiomyocytes showed that activation of AMPK could reverse the mitochondrial dysfunction somehow. Collectively, our study provided evidence that SG surgery could alleviate mitochondrial dysfunction in DCM. Moreover, AMPK-activated NR4A1/DRP1 repression might act as a significant reason for maintaining mitochondrial homeostasis in the myocardium, thus contributing to morphological and functional alleviation of DCM.

14.
J Exp Clin Cancer Res ; 41(1): 15, 2022 Jan 08.
Article in English | MEDLINE | ID: mdl-34998404

ABSTRACT

BACKGROUND: Acquired resistance of 5-fluorouracil (5-FU) remains a clinical challenge in colorectal cancer (CRC), and efforts to develop targeted agents to reduce resistance have not yielded success. Metabolic reprogramming is a key cancer hallmark and confers several tumor phenotypes including chemoresistance. Glucose metabolic reprogramming events of 5-FU resistance in CRC has not been evaluated, and whether abnormal glucose metabolism could impart 5-FU resistance in CRC is also poorly defined. METHODS: Three separate acquired 5-FU resistance CRC cell line models were generated, and glucose metabolism was assessed by measuring glucose and lactate utilization, RNA and protein expressions of glucose metabolism-related enzymes and changes of intermediate metabolites of glucose metabolite pool. The protein levels of hypoxia inducible factor 1α (HIF-1α) in primary tumors and circulating tumor cells of CRC patients were detected by immunohistochemistry and immunofluorescence. Stable HIF1A knockdown in cell models was established with a lentiviral system. The influence of both HIF1A gene knockdown and pharmacological inhibition on 5-FU resistance in CRC was evaluated in cell models in vivo and in vitro. RESULTS: The abnormality of glucose metabolism in 5-FU-resistant CRC were described in detail. The enhanced glycolysis and pentose phosphate pathway in CRC were associated with increased HIF-1α expression. HIF-1α-induced glucose metabolic reprogramming imparted 5-FU resistance in CRC. HIF-1α showed enhanced expression in 5-FU-resistant CRC cell lines and clinical specimens, and increased HIF-1α levels were associated with failure of fluorouracil analog-based chemotherapy in CRC patients and poor survival. Upregulation of HIF-1α in 5-FU-resistant CRC occurred through non-oxygen-dependent mechanisms of reactive oxygen species-mediated activation of PI3K/Akt signaling and aberrant activation of ß-catenin in the nucleus. Both HIF-1α gene knock-down and pharmacological inhibition restored the sensitivity of CRC to 5-FU. CONCLUSIONS: HIF-1α is a potential biomarker for 5-FU-resistant CRC, and targeting HIF-1a in combination with 5-FU may represent an effective therapeutic strategy in 5-FU-resistant CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/metabolism , Animals , Cell Line, Tumor , Colorectal Neoplasms/pathology , Disease Models, Animal , Fluorouracil/pharmacology , Humans , Male , Mice , Mice, Nude , Prognosis , Reactive Oxygen Species
15.
Transbound Emerg Dis ; 69(2): 249-253, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35001535

ABSTRACT

Rabies is a serious public health issue in China, with over 95% of human infections transmitted by dogs. As part of a routine surveillance carried out in the Inner Mongolia Autonomous Region (IMAR) between 2019 and 2021, 80 of 95 suspected rabies cases in domestic animals (dogs, livestock) and wild carnivores (foxes, badgers, a raccoon dog) were confirmed as rabies virus (RABV) positive. Phylogenetic analysis of RABVs of the 80 cases based on complete N genes showed that 97.5% (78/80) of the virus strains belonged to the Cosmopolitan (steppe-type) clade, with one in each of Arctic-related (AL2) and Asian (SEA1) clades. The data show that infected foxes have become a major transmission source of rabies in China, second only to dogs, and play a pivotal role in animal rabies epizootics in the north and northwest of the country. The recent spread of fox rabies to other animal species presents an increasing threat to public health and emphasizes the importance of animal rabies surveillance.


Subject(s)
Dog Diseases , Rabies virus , Rabies , Animals , Animals, Domestic , Animals, Wild , China/epidemiology , Dog Diseases/epidemiology , Dogs , Foxes , Phylogeny , Rabies/epidemiology , Rabies/veterinary , Rabies virus/genetics
16.
Front Surg ; 8: 748515, 2021.
Article in English | MEDLINE | ID: mdl-34917646

ABSTRACT

Background: During lower abdominal marginal hernia repair, the peritoneal flap is routinely freed to facilitate mesh placement and closed to conclude the procedure. This procedure is generally called trans-abdominal partial extra-peritoneal (TAPE). However, the necessity of closing the free peritoneal flap is still controversial. This study aimed to investigate the safety and feasibility of leaving the free peritoneal flap in-situ. Methods: A retrospective review was conducted on 68 patients (16 male, 52 female) who underwent laparoscopic hernia repair between June 2014 and March 2021. Patients were diagnosed as the lower abdominal hernia and all required freeing the peritoneal flap during the operation. Patients were divided into 2 groups: one group was TAPE group with the closed free peritoneal flap, another group left the free peritoneal flap unclosed. Analyses were performed to compare both intraoperative parameters and postoperative complications. Results: There were no significant differences in demographic, comorbidity, hernia characteristics and ASA classification. The intra-operative bleeding volume, visceral injury, hospital stay, urinary retention, visual analog scale (VAS) score, dysuria, intestinal obstruction, surgical site infection, mesh infection, recurrence rate and hospital stay were similar among the two groups. Mean operative time of the flap closing procedure was higher than for patients with the free peritoneal flap left in-situ (p = 0.002). Comparisons of postoperative complications showed flap closure resulted in a higher incidence of seroma formation (p = 0.005). Conclusion: Providing a barrier-coated mesh is used during laparoscopic lower abdominal marginal hernia repair, it is safe to leave the free peritoneal flap in-situ and this approach may prevent the occurrence of seromas.

17.
Front Physiol ; 12: 785799, 2021.
Article in English | MEDLINE | ID: mdl-34858216

ABSTRACT

Background: Cardiac hypertrophy as a main pathological manifestation of diabetic cardiomyopathy (DCM), is a significant complication of diabetes. Bariatric surgery has been proven to relieve DCM; however, whether it can alleviate diabetes-induced cardiac hypertrophy is undefined. Methods: Diabetic and obese rats were performed sleeve gastrectomy (SG) after having diabetes for 16weeks. The rats were euthanized 8weeks after SG. Metabolic parameters, heart function parameters, myocardial glucose uptake, morphometric and histological changes, and the expression level of mitogen-activated protein kinases (MAPKs) were determined and compared among the control group (CON group), diabetes mellitus group (DM group), sham operation group (SHAM group), and SG group. Results: Compared with the SHAM group, the blood glucose, body weight, insulin resistance, and other metabolic parameters were significantly improved in the SG group. There was also a marked improvement in myocardial morphometric and histological parameters after SG. Furthermore, the myocardial glucose uptake and heart function were reversed after SG. Additionally, the phosphorylation of MAPKs was inhibited after SG, including p38 MAPKs, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases 1/2 (ERK1/2). The expression of DUSP6, which dephosphorylates ERK1/2, was upregulated after SG. These findings suggest that SG ameliorated diabetes-induced cardiac hypertrophy correlates with the MAPK signaling pathway. Conclusion: These results showed that diabetes-induced cardiac hypertrophy was ameliorated after SG was closely related to the inhibition of the MAPK signaling pathway and upregulation of DUSP6. Therefore, this study provides a novel strategy for treating diabetes-induced cardiac hypertrophy.

18.
New Phytol ; 230(5): 1940-1952, 2021 06.
Article in English | MEDLINE | ID: mdl-33651378

ABSTRACT

Pre-harvest sprouting (PHS), the germination of grain before harvest, is a serious problem resulting in wheat yield and quality losses. Here, we mapped the PHS resistance gene PHS-3D from synthetic hexaploid wheat to a 2.4 Mb presence-absence variation (PAV) region and found that its resistance effect was attributed to the pleiotropic Myb10-D by integrated omics and functional analyses. Three haplotypes were detected in this PAV region among 262 worldwide wheat lines and 16 Aegilops tauschii, and the germination percentages of wheat lines containing Myb10-D was approximately 40% lower than that of the other lines. Transcriptome and metabolome profiling indicated that Myb10-D affected the transcription of genes in both the flavonoid and abscisic acid (ABA) biosynthesis pathways, which resulted in increases in flavonoids and ABA in transgenic wheat lines. Myb10-D activates 9-cis-epoxycarotenoid dioxygenase (NCED) by biding the secondary wall MYB-responsive element (SMRE) to promote ABA biosynthesis in early wheat seed development stages. We revealed that the newly discovered function of Myb10-D confers PHS resistance by enhancing ABA biosynthesis to delay germination in wheat. The PAV harboring Myb10-D associated with grain color and PHS will be useful for understanding and selecting white grained PHS resistant wheat cultivars.


Subject(s)
Dioxygenases , Triticum , Dioxygenases/genetics , Germination , Plant Proteins/genetics , Triticum/genetics
19.
Biochem Biophys Res Commun ; 548: 134-142, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33640606

ABSTRACT

Sleeve gastrectomy (SG) is the most widely used bariatric procedures globally, which could improve glucose and lipid metabolism dramatically. Circular RNAs (circRNAs) are being increasingly implicated in numerous pathophysiological processes. However, for diabetes mellitus (DM), the expression and function of circRNAs remain largely undetermined, in particular, whether circRNAs mediate the amelioration of DM observed after SG. Using a diabetic rat model, we subjected liver tissue from SG and sham-operated rats to RNA sequencing. Amongst the 103 differentially regulated circRNAs identified in diabetic rats after SG, we focused on circDOCK7, a highly expressed circRNA derived from the back-splicing of the DOCK7 gene. Silencing of circDOCK7 significantly inhibited cellular proliferation and induction of apoptosis in insulin-resistant rat hepatocytes. Further analysis indicated circDOCK7 harbored binding sites for miR-139-3p and regulated the expression of minichromosome maintenance 3 (MCM3) through sequestration of miR-139-3p. Our findings therefore demonstrate a novel regulatory pathway involving circDOCK7 that regulates cellular proliferation and apoptosis through increasing the expression of MCM3. Overall, our study establishes a list of specific circRNAs expressed in diabetic rat liver after SG including circDOCK7 which serve as potential biomarkers and treatment targets for DM patients.


Subject(s)
Apoptosis/genetics , Diabetes Mellitus, Experimental/genetics , Down-Regulation/genetics , Gastrectomy , Hepatocytes/pathology , MicroRNAs/metabolism , Minichromosome Maintenance Complex Component 3/metabolism , RNA, Circular/metabolism , Animals , Base Sequence , Body Weight , Cell Line , Cell Proliferation/genetics , Diabetes Mellitus, Experimental/pathology , Feeding Behavior , Gene Silencing , Glucose/metabolism , Hepatocytes/metabolism , Homeostasis , Male , MicroRNAs/genetics , Minichromosome Maintenance Complex Component 3/genetics , RNA Stability/genetics , RNA, Circular/genetics , Rats, Wistar
20.
Oncogene ; 38(30): 5860-5872, 2019 07.
Article in English | MEDLINE | ID: mdl-31235785

ABSTRACT

Cancer progression depends on a tumor-supportive microenvironment. Myeloid-derived suppressor cells (MDSCs) represent key cellular components in tumor microenvironment and have been demonstrated to facilitate tumor progression by restricting host immune responses and by sustaining the malignancy of cancer cells. CUL4B, which assembles the CUL4B-RING E3 ligase complex (CRL4B), possesses a potent oncogenic property in cancer cells by epigenetically inactivating many tumor suppressors. However, CUL4B in hematopoietic cells exerts tumor-suppressive effect by restricting the accumulation and function of MDSCs. How CUL4B regulates the function of MDSCs is not fully characterized. In the present study, we demonstrate that the enhanced growth and metastasis of transplanted tumor cells in hematopoietic or myeloid cell-specific Cul4b knockout recipient mice is mediated by increased production of IL-6 in MDSCs. CUL4B complex epigenetically represses IL-6 transcription in myeloid cells. The IL-6 produced by MDSCs renders cancer cells stem cell-like properties by activating IL-6/STAT3 signaling. This crosstalk was effectively blocked either by blocking IL-6 in MDSCs or by inhibition of STAT3 activation in tumor cells. These findings provide a new mechanistic insight into the cancer-promoting property of MDSCs.


Subject(s)
Cullin Proteins/genetics , Interleukin-6/metabolism , Melanoma, Experimental/pathology , Myeloid-Derived Suppressor Cells/metabolism , Up-Regulation , Animals , Cell Line, Tumor , Melanoma, Experimental/metabolism , Mice , Mice, Knockout , STAT3 Transcription Factor/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...