Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
2.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38583018

ABSTRACT

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Subject(s)
Nanopores , Titanium , Titanium/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Osteogenesis/genetics , Electrolytes/pharmacology , Ions/pharmacology , Surface Properties , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
3.
Article in English | MEDLINE | ID: mdl-38536574

ABSTRACT

While the correlation between parental autonomy granting and adolescents' problematic Internet use (PIU) has been confirmed, the processes underlying this connection have not been thoroughly investigated. Drawing on the ecological systems theory, this study sought to investigate the mediating mechanism of peer attachment and the moderating mechanism of school climate that link parental autonomy granting to PIU. A two-wave longitudinal design was employed with a time interval of six months. The participants were 852 adolescents who attended three middle schools located in Guangdong Province, China. Self-report questionnaires were used to obtain data on demographics, parental autonomy granting, peer attachment, school climate, and PIU. The findings indicated that peer attachment significantly mediated the link between parental autonomy granting and adolescent PIU. A positive school climate significantly moderated the influence of parental autonomy granting on peer attachment and the influence of peer attachment on PIU. Specifically, the association between parental autonomy granting and peer attachment and the association between peer attachment and PIU were more pronounced when the school climate was perceived to be positive. This research underscores the possible significance of peer attachment in the association between parental autonomy granting and PIU and offers valuable insights for mitigating the negative outcomes of PIU.

4.
Sci Rep ; 14(1): 6251, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491037

ABSTRACT

The core of many cryptocurrencies is the decentralised validation network operating on proof-of-work technology. In these systems, validation is done by so-called miners who can digitally sign blocks once they solve a computationally-hard problem. Conventional wisdom generally considers this protocol as secure and stable as miners are incentivised to follow the behaviour of the majority. However, whether some strategic mining behaviours occur in practice is still a major concern. In this paper we target this question by focusing on a security threat: a selfish mining attack in which malicious miners deviate from protocol by not immediately revealing their newly mined blocks. We propose a statistical test to analyse each miner's behaviour in five popular cryptocurrencies: Bitcoin, Litecoin, Monacoin, Ethereum and Bitcoin Cash. Our method is based on the realisation that selfish mining behaviour will cause identifiable anomalies in the statistics of miner's successive blocks discovery. Secondly, we apply heuristics-based address clustering to improve the detectability of this kind of behaviour. We find a marked presence of abnormal miners in Monacoin and Bitcoin Cash, and, to a lesser extent, in Ethereum. Finally, we extend our method to detect coordinated selfish mining attacks, finding mining cartels in Monacoin where miners might secretly share information about newly mined blocks in advance. Our analysis contributes to the research on security in cryptocurrency systems by providing the first empirical evidence that the aforementioned strategic mining behaviours do take place in practice.

5.
Nano Lett ; 24(9): 2765-2772, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393855

ABSTRACT

Alloying lanthanide ions (Yb3+) into perovskite quantum dots (Yb3+:CsPb(Cl1-xBrx)3) is an effective method to achieve efficient near-infrared (NIR) luminescence (>950 nm). Increasing the Yb3+ alloying ratio in the perovskite matrix enhances the luminescence intensity of Yb3+ emission at 990 nm. However, high Yb3+ alloying (>15%) results in vacancy-induced inferior material stability. In this work, we developed a polarity-mediated antisolvent manipulation strategy to resolve the incompatibility between a high Yb3+ alloying ratio and inferior stability of Yb3+:CsPb(Cl1-xBrx)3. Precise control of solution polarity enables increased uniformity of the perovskite matrix with fewer trap densities. Employing this strategy, we obtain Yb3+:CsPb(Cl1-xBrx)3 with the highest Yb3+ alloying ratio of 30.2% and a 2-fold higher electroluminescence intensity at 990 nm. We lever the engineered Yb3+:CsPb(Cl1-xBrx)3 to fabricate NIR-LEDs, achieving a peak external quantum efficiency (EQE) of 8.5% at 990 nm: this represents the highest among perovskite NIR-LEDs with an emission wavelength above 950 nm.

6.
Gene ; 896: 148033, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013127

ABSTRACT

In the entire world, hepatocellular carcinoma (HCC) is one of the most frequent cancers that lead to death. Experiments on the function of long non-coding RNAs in the emergence of malignancies, including HCC, are ongoing. As a crucial RNA monitoring mechanism in eucaryotic cells, nonsense-mediated mRNA decay (NMD) can recognize and destroy mRNAs, which has an premature termination codons (PTC) in the open reading frame to prevent harmful buildup of truncated protein products in the cells. Nonsense transcript regulator 1 (Up-frameshift suppressor 1, UPF1), as a highly conserved RNA helicase and ATPase, plays a key role in NMD. Our laboratory screened out the highly expressed lncRNA LINC02561 in HCC from the TCGA database. Further research found that LINC02561 enhanced the invasion and transition abilities of liver cancer cells by regulating the protein N-Myc downstream regulated 1 (NDRG1). Hypoxia inducible factor-1 (HIF-1α) can bonded to LINC02561 promoters under hypoxic conditions, thereby promoting the upregulation of LINC02561 expression in liver cancer cells. LINC02561 competes with NDRG1 mRNA to bind UPF1, thereby preventing the degradation of NDRG1 mRNA to facilitate NDRG1 protein level. Taken together, the HIF1α-LINC02561-UPF1-NDRG1 regulatory axis could be an entirely novel target of liver cancer-related treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Trans-Activators/genetics , Liver Neoplasms/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , Nonsense Mediated mRNA Decay , Codon, Nonsense
7.
J Transl Med ; 21(1): 754, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884960

ABSTRACT

BACKGROUND: Recent research shows that tumor-associated macrophages (TAMs) are the primary consumers of glucose in tumor tissue, surpassing that of tumor cells. Our previous studies revealed that inhibiting glucose uptake impairs the survival and tumor-promoting function of hypoxic TAMs, suggesting that glucose reduction by energy restriction (calorie restriction or short-term fasting) may has a significant impact on TAMs. The purpose of this study is to verify the effect of fasting-mimicking diet (FMD) on TAMs, and to determine whether FMD synergizes with anti-angiogenic drug apatinib via TAMs. METHODS: The effect of FMD on TAMs and its synergistic effects with apatinib were observed using an orthotopic mouse breast cancer model. An in vitro cell model, utilizing M2 macrophages derived from THP-1 cell line, was intended to assess the effects of low glucose on TAMs under hypoxic and normoxic conditions. Bioinformatics was used to screen for potential mechanisms of action, which were then validated both in vivo and in vitro. RESULTS: FMD significantly inhibit the pro-tumor function of TAMs in vivo and in vitro, with the inhibitory effect being more pronounced under hypoxic conditions. Additionally, the combination of FMD-mediated TAMs inhibition with apatinib results in synergistic anti-tumor activity. This effect is partially mediated by the downregulation of CCL8 expression and secretion by the mTOR-HIF-1α signaling pathway. CONCLUSIONS: These results support further clinical combination studies of FMD and anti-angiogenic therapy as potential anti-tumor strategies.


Subject(s)
Angiogenesis Inhibitors , Tumor-Associated Macrophages , Animals , Mice , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Hypoxia , Fasting , Diet , Glucose , Tumor Microenvironment , Cell Line, Tumor
8.
Food Sci Nutr ; 11(10): 6459-6469, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823169

ABSTRACT

Obesity is characterized by chronic inflammation, insulin resistance, and gut microbiota dysbiosis. Dioscorea opposita Thunb. is a traditional food and medicine homolog from China. In the present study, polysaccharides isolated from a water extract of Dioscorea opposita Thunb. (DOTPs) were prepared. We showed that DOTPs reduced body weight, accumulation of fat tissues, insulin resistance, and inflammation in high-fat diet (HFD)-fed mice. Further experiments showed that DOTPs could regulate the composition of the gut microbiota in HFD mice. DOTPs supplementation in HFD-fed mice resulted in the reduction of the Firmicutes-to-Bacteroidetes ratio. We further demonstrated that DOTPs supplementation enhanced bacterial levels of Akkermansia and reduced levels of Ruminiclostridium_9. A significant reduction of glycolysis metabolism related to obesity and gut microbiota dysbiosis was also observed upon administration of DOTPs. Our results suggest that DOTPs can produce significant anti-obesity effects, by inhibiting systematic inflammation and ameliorating gut microbiota dysbiosis in diet-induced obese mice.

9.
Angew Chem Int Ed Engl ; 62(46): e202311089, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37770413

ABSTRACT

Resurfacing perovskite nanocrystals (NCs) with tight-binding and conductive ligands to resolve the dynamic ligands-surface interaction is the fundamental issue for their applications in perovskite light-emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these ligands either exhibit weak Lewis acid/base interactions or need high polar solvents for dissolution and passivation, resulting in a compromise in the efficiency and stability of PeLEDs. Herein, we report a chemically reactive agent (Iodotrimethylsilane, TMIS) to address the trade-off among conductivity, solubility and passivation using all-inorganic CsPbI3 NCs. The liquid TMIS ensures good solubility in non-polar solvents and reacts with oleate ligands and produces in situ HI for surface etching and passivation, enabling strong-binding ligands on the NCs surface. We report, as a result, red PeLEDs with an external quantum efficiency (EQE) of ≈23 %, which is 11.2-fold higher than the control, and is among the highest CsPbI3 PeLEDs. We further demonstrate the universality of this ligand strategy in the pure bromide system (CsPbBr3 ), and report EQE of ≈20 % at 640, 652, and 664 nm. This represents the first demonstration of a chemically reactive ligand strategy that applies to different systems and works effectively in red PeLEDs spanning emission from pure-red to deep-red.

10.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242111

ABSTRACT

Quantum dot light-emitting diodes (QLEDs) have been identified as a next-generation display technology owing to their low-cost manufacturing, wide color gamut, and electrically driven self-emission properties. However, the efficiency and stability of blue QLEDs still pose a significant challenge, limiting their production and potential application. This review aims to analyse the factors leading to the failure of blue QLEDs and presents a roadmap to accelerate their development based on the progress made in the synthesis of II-VI (CdSe, ZnSe) quantum dots (QDs), III-V (InP) QDs, carbon dots, and perovskite QDs. The proposed analysis will include discussions on material synthesis, core-shell structures, ligand interactions, and device fabrication, providing a comprehensive overview of these materials and their development.

11.
Sci Total Environ ; 885: 163769, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37149190

ABSTRACT

O-Carboxymethyl chitosan nanoparticles (O-CMC-NPs), which are organic pesticide carriers, have excellent application potential. Exploring the effects of O-CMC-NPs on non-target organisms, such as Apis cerana cerana, is critical for their effective application; however, such studies are limited. This study investigated the stress response of A. cerana Fabricius after O-CMC-NPs ingestion. The administration of high O-CMC-NP concentrations enhanced the activities of antioxidant and detoxifying enzymes in A. cerana, with the activity of glutathione-S-transferase increasing by 54.43 %-64.33 % after one day. The transit of O-CMC-NPs into the A. cerana midgut resulted in their deposition and adherence to the intestinal wall, as they cluster and precipitate in acidic conditions. The population of Gillianella bacteria in the middle intestine was remarkably reduced after 6 d of administration of high O-CMC-NP concentrations. Contrastingly, the abundance of Bifidobacteria and Lactobacillus in the rectum significantly increased. These results indicate that the intake of high concentrations of O-CMC-NPs causes a stress response in A. cerana and affects the relative abundance of crucial intestinal flora, which may pose a potential risk to the colony. This implies that even nanomaterials with favorable biocompatibility should be applied reasonably within a specific range to avoid adverse effects on the environment and non-target organisms in the context of large-scale research and promotion of nanomaterials.


Subject(s)
Chitosan , Gastrointestinal Microbiome , Bees , Animals , Antioxidants
12.
Chem Biodivers ; 20(2): e202200897, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36631429

ABSTRACT

Quercetin is a kind of polyphenolic flavonoid compounds which has perfect antioxidant properties. However, quercetin is not available in many situations due to its poor bioavailability. In this work, the QAEs with better solubility and even stronger antioxidant properties were synthesized, through the esterification between quercetin and the chlorinated cinnamic acid or its derivatives, whose chlorination were achieved by using SOCl2 . The protective effects of the QAEs were evaluated by the H2 O2 -induced apoptosis experiment in rat adrenal pheochromocytoma cells (PC12 cells) and its ability to remove ROS generated by oxidative stress. Compared with the original quercetin group, the QAEs groups showed much improved cell viability and capability of removing ROS, which means their higher bioavailability than the parent.


Subject(s)
Antioxidants , Quercetin , Rats , Animals , Quercetin/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species , PC12 Cells , Esters/pharmacology , Oxidative Stress
13.
Shanghai Kou Qiang Yi Xue ; 32(5): 462-467, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38171513

ABSTRACT

PURPOSE: To investigate the effect of corilagin on proliferation and apoptosis of human oral squamous cell carcinoma CAL-27 cells, and to explore the molecular mechanism of inducing cell apoptosis. METHODS: In vitro experiments, Cal-27 cells were treated with different concentrations of corilagin, cell-counting kit-8(CCK-8) assay and colony formation assay were performed to evaluate cell proliferation; flow cytometric analysis was used to evaluate cell apoptosis; qRT-PCR and Western blot assays were performed to evaluate the effect of corilagin on the expression levels of Bax, Bcl-2, Caspase-3, Cleaved Caspase-3 in CAL-27 cells. In vivo experiments, tumor-bearing nude mice was constructed with CAL-27 cells to evaluate the antitumor effect of corilagin. GraphPad Prism 8.0 software package was used for statistical analysis of the data. RESULTS: In vitro experiments showed that corilagin in a dose-dependent manner inhibited proliferation, induced apoptosis, up-regulated Bax, caspase-3, cleaved caspase-3 and down-regulated Bcl-2 at the mRNA and protein levels of CAL-27 cells, and the differences were statistically significant(P<0.05). In vivo experiments showed that compared with the control group, corilagin could significantly reduce the volume of tumor in nude mice(P<0.05). CONCLUSIONS: Corilagin can significantly inhibit CAL-27 cell growth and promote its apoptosis both in vitro and in vivo, which may be related to the mediation of Bax/Bcl-2/Caspase-3 signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Animals , Mice , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Caspase 3/genetics , Caspase 3/metabolism , Caspase 3/pharmacology , Mice, Nude , Mouth Neoplasms/drug therapy , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Cell Line, Tumor , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation
15.
Front Cardiovasc Med ; 9: 974345, 2022.
Article in English | MEDLINE | ID: mdl-36172572

ABSTRACT

Obstructive sleep apnea (OSA) accelerates the progression of chronic heart failure (CHF). OSA is characterized by chronic intermittent hypoxia (CIH), and CIH exposure accelerates cardiac systolic dysfunction and cardiac remodeling in a cardiac afterload stress mouse model. Mechanistic experiments showed that long-term CIH exposure activated hypoxia-inducible factor 1α (HIF-1α) expression in the mouse heart and upregulated miR-29c expression and that both HIF-1α and miR-29c simultaneously inhibited sarco-/endoplasmic reticulum calcium ATPase 2a (SERCA2a) expression in the mouse heart. Cardiac HIF-1α activation promoted cardiomyocyte hypertrophy. SERCA2a expression was suppressed in mouse heart in middle- and late-stage cardiac afterload stress, and CIH exposure further downregulated SERCA2a expression and accelerated cardiac systolic dysfunction. Prolyl hydroxylases (PHDs) are physiological inhibitors of HIF-1α, and PHD3 is most highly expressed in the heart. Overexpression of PHD3 inhibited CIH-induced HIF-1α activation in the mouse heart while decreasing miR-29c expression, stabilizing the level of SERCA2a. Although PHD3 overexpression did not reduce mortality in mice, it alleviated cardiac systolic dysfunction and cardiac remodeling induced by CIH exposure.

16.
Clin Med Insights Oncol ; 16: 11795549221110522, 2022.
Article in English | MEDLINE | ID: mdl-35875417

ABSTRACT

Background: In reproductive-aged women, the incidence of atypical endometrial hyperplasia (AEH) or endometrioid endometrial carcinoma (EEC) is rising globally. The study aimed to investigate the effectiveness of hysteroscopic curettage followed by megestrol acetate (MA) plus metformin as conservative treatment in AEH and early EEC. Methods: We retrospectively studied AEH and stage IA, grade 1 EEC patients treated with hysteroscopic curettage followed by MA (160 mg/d) plus metformin (1500 mg/d) from January 2010 to December 2020 at Fudan University Shanghai Cancer Center. Treatment outcomes were assessed by complete response (CR) rate, recurrence rate, and pregnancy outcomes. Univariate and multivariate analyses were performed via the logistic regression model. Results: The study included 79 patients, 31 (39.2%) with AEH and 48 (60.8%) with EEC. The medians of age (years) and follow-up time (months) were 30 and 39.5, respectively. Seventy-six patients (96.2%) finally achieved CR. The median time to CR was 3.6 (3.0-20.6) months. The CR rate after 3 months, 6 months, and 1 year was 55 (69.6%), 67 (84.8%), and 72 (91.1%), respectively. Recurrence occurred in 26 (34.2%) patients. Treatment duration ⩾9 months was associated with a lower recurrence rate after CR (P = .012). Fourteen (93.3%) of the 15 recurrent patients who received progestin re-treatment achieved CR again. Finally, 29 patients delivered live births. Conclusions: Hysteroscopy followed by MA plus metformin can achieve CR in short time and is overall safe. Consolidation treatment should be prolonged to decrease the recurrence rate, despite a shorter time to CR.

17.
Food Chem (Oxf) ; 4: 100094, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35415681

ABSTRACT

Cinnamon oil is a blend of secondary metabolites and is widely used as spice. Endophytic bacteria are always related to the secondary metabolites production. However, the potential of endophytic bacteria communities for cinnamon oil production during cinnamon shade-drying process is still not clear. In this study, we investigated the composition and metabolic function of endophytic bacterial community during 80-day shade-drying process. The temporal dynamics of essential oil content and its dominant constituents were analyzed. The succession of endophytic bacterial community from d0 to d80 was identified. The influence of endophytic bacterial community evolution on cinnamon oil is significant positive. Predictive functional analysis indicated that shade-drying process was rich in Saccharopolyspora that produce enzymes for the conversion of phenylalanine to cinnamaldehyde. These findings enhance our understanding of the functional bacterial genera and functional genes involved in the production of cinnamon oil during cinnamon shade-drying process.

18.
Cell Death Discov ; 8(1): 161, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379787

ABSTRACT

Moderate autophagy can remove damaged proteins and organelles. In some inflammatory diseases, autophagy plays a protective role by inhibiting the NOD-like receptor family pyrin domain containing 3(NLRP3). (Pro)renin receptor (PRR, or ATP6AP2) is a critical component of the V-ATPase required for autophagy. It remains controversial about ATP6AP2 in the pathological process. The impact of ATP6AP2 on NLRP3 inflammasome and autophagic flux remains unknown under pressure overload stress. This research explores the potential link between ATP6AP2, autophagic flux, and NLRP3. There was upregulation of ATP6AP2 from 5-day post-TAC, and this expression remained at a high level until 8-weeks post-TAC in wild mice. Meanwhile, autophagic flux switched from early compensatory activation to blocking in the heart failure phase. NLRP3 activation can be seen at 8-week post-TAC. Adenovirus-mediated knockdown of ATP6AP2(shR-ATP6AP2) accelerated the progress of heart failure. After TAC was induced, shR-ATP6AP2 significantly deteriorated heart function and fibrosis compared with the shR-Scr group. Meanwhile, there was an elevated expression of NLRP3 and autophagic flux blockage. A transgenic mouse(Tg) with cardio-restricted ATP6AP2/(P)RR overexpression was constructed. Although high expression in cardiac tissue, there were no spontaneous functional abnormalities under the basal state. Cardiac function, fibrosis, hypertrophy remained identical to the control TAC group. However, SQSTM1/P62 was reduced, which indicated the relief of autophagic flux blockage. Further, Neonatal rat ventricular myocyte (NRVMs) transfected with shR-ATP6AP2 showed more susceptibility than sh-Scr NRVMs to phenylephrine-induced cell death. More reactive oxygen species (ROS) or mito-ROS accumulated in the shR-ATP6AP2 group when phenylephrine stimulation. Blocking NLRP3 activation in vivo partly rescued cardiac dysfunction and fibrosis. In conclusion, ATP6AP2 upregulation is a compensatory response to pressure overload. If not effectively compensated, it compromises autophagic flux, leads to dysfunctional mitochondria accumulation, further produces ROS to activate NLRP3, eventually accelerates heart failure.

19.
Am J Clin Oncol ; 45(3): 95-104, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35195559

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose and resistant to therapy and has a poor prognosis. Autophagy plays a vital role in PDAC development and progression. This study aimed to establish an autophagy-related gene (ARG) signature to predict the prognosis of patients with PDAC. MATERIALS AND METHODS: The expression profiles of PDAC and healthy pancreatic tissues were obtained from The Cancer Genome of Atlas (TCGA) and GTEx (Genotype-Tissue Expression) databases, respectively. Univariate and multivariate Cox regression analyses were performed on differentially expressed ARGs to identify the optimal prognosis-related genes. RESULTS: A total of 73 ARGs demonstrated significant differences in expression levels between PDAC and healthy pancreatic tissues. Several pathways that play crucial roles in biological processes were identified via enrichment analyses. Furthermore, an ARG signature was established based on overall survival-related ARGs (CASP4, BAK1, PIK3R4, CASP8, BIRC5, RPTOR, and CAPN1) using least absolute shrinkage and selection operator (LASSO) regression. Cox regression analysis confirmed that the 7-gene signature was an independent prognostic factor for patients with PDAC (P<0.001). In addition, the GSE21501 and GSE28735 datasets were used to validate the predictive value of the prognostic model for PDAC. We also constructed a clinical nomogram with a concordance index of 0.712 to predict the overall survival of patients by integrating clinical characteristics and the ARG signature. Calibration curves substantiated fine concordance between nomogram prediction and actual observation. CONCLUSION: We constructed a new ARG-related prognostic model, which can be a prognostic biomarker and offers insights into identifying potential therapeutic targets for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Autophagy/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Humans , Pancreatic Neoplasms/pathology , Prognosis , Pancreatic Neoplasms
20.
Kaohsiung J Med Sci ; 38(4): 336-346, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35049148

ABSTRACT

The current study set out to clarify the role of miR-424-5p promoter methylation in epithelial mesenchymal transition (EMT) of hepatocellular carcinoma (HCC) cells. The findings of quantitative real-time-polymerase chain reaction and methylation-sensitive high-resolution melting assays elicited that miR-424-5p was poorly expressed in HCC tissues and cells while highly methylated. Meanwhile, upon demethylation, miR-424-5p expression levels were partly recovered in HCC cells. In addition, miR-424-5p upregulation reduced cell viability and elevated apoptosis of HCC cells, in parallel with increased N-cadherin and decreased E-cadherin levels. Dual-luciferase reporter assay further validated that miR-424-5p bound to the kinesin family member 2A (KIF2A), and miR-424-5p overexpression downregulated KIF2A. In addition, KIF2A overexpression reversed the miR-424-5p-driven changes in terms of cell viability, apoptosis and EMT-related protein levels. Furthermore, xenograft tumors were established via injection of Huh7 cells, followed by miR-424-5p overexpression in vivo, which inhabited KIF2A downregulation and attenuated tumor growth along with decreased Ki67 positive expression, diminished N-cadherin and elevated E-cadherin levels. Overall, our findings supported the conclusion that miR-424-5p promoter methylation reduced miR-424-5p expression and upregulated KIF2A, thereby promoting HCC EMT.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Kinesins/genetics , Liver Neoplasms/pathology , Methylation , Mice , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...