Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Biomater Res ; 28: 0031, 2024.
Article in English | MEDLINE | ID: mdl-38845842

ABSTRACT

The abdominal wall plays a crucial role in safeguarding the internal organs of the body, serving as an essential protective barrier. Defects in the abdominal wall are common due to surgery, infection, or trauma. Complex defects have limited self-healing capacity and require external intervention. Traditional treatments have drawbacks, and biomaterials have not fully achieved the desired outcomes. Hydrogel has emerged as a promising strategy that is extensively studied and applied in promoting tissue regeneration by filling or repairing damaged tissue due to its unique properties. This review summarizes the five prominent properties and advances in using hydrogels to enhance the healing and repair of abdominal wall defects: (a) good biocompatibility with host tissues that reduces adverse reactions and immune responses while supporting cell adhesion migration proliferation; (b) tunable mechanical properties matching those of the abdominal wall that adapt to normal movement deformations while reducing tissue stress, thereby influencing regulating cell behavior tissue regeneration; (c) drug carriers continuously delivering drugs and bioactive molecules to sites optimizing healing processes enhancing tissue regeneration; (d) promotion of cell interactions by simulating hydrated extracellular matrix environments, providing physical support, space, and cues for cell migration, adhesion, and proliferation; (e) easy manipulation and application in surgical procedures, allowing precise placement and close adhesion to the defective abdominal wall, providing mechanical support. Additionally, the advances of hydrogels for repairing defects in the abdominal wall are also mentioned. Finally, an overview is provided on the current obstacles and constraints faced by hydrogels, along with potential prospects in the repair of abdominal wall defects.

2.
ACS Appl Mater Interfaces ; 16(23): 30430-30442, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814614

ABSTRACT

Patients with open abdominal (OA) wounds have a mortality risk of up to 30%, and the resulting disabilities would have profound effects on patients. Here, we present a novel double-sided adhesive tape developed for the management of OA wounds. The tape features an asymmetrical structure and employs an acellular dermal matrix (ADM) with asymmetric wettability as a scaffold. It is constructed by integrating a tissue-adhesive hydrogel composed of polydopamine (pDA), quaternary ammonium chitosan (QCS), and acrylic acid cross-linking onto the bottom side of the ADM. Following surface modification with pDA, the ADM would exhibit characteristics resistant to bacterial adhesion. Furthermore, the presence of a developed hydrogel ensures that the tape not only possesses tissue adhesiveness and noninvasive peelability but also effectively mitigates damage caused by oxidative stress. Besides, the ADM inherits the strength of the skin, imparting high burst pressure tolerance to the tape. Based on these remarkable attributes, we demonstrate that this double-sided (D-S) tape facilitates the repair of OA wounds, mitigates damage to exposed intestinal tubes, and reduces the risk of intestinal fistulae and complications. Additionally, the D-S tape is equally applicable to treating other abdominal injuries, such as gastric perforations. It effectively seals the perforation, promotes injury repair, and prevents the formation of postoperative adhesions. These notable features indicate that the presented double-sided tape holds significant potential value in the biomedical field.


Subject(s)
Abdominal Injuries , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Mice , Polymers/chemistry , Polymers/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Wound Healing/drug effects , Pressure , Male , Rats
3.
Environ Geochem Health ; 46(5): 174, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592609

ABSTRACT

The effects of long-term exposure to fine particulate matter (PM2.5) constituents on chronic kidney disease (CKD) are not fully known. This study sought to examine the association between long-term exposure to major PM2.5 constituents and CKD and look for potential constituents contributing substantially to CKD. This study included 81,137 adults from the 2018 to 2019 baseline survey of China Multi-Ethnic Cohort. CKD was defined by the estimated glomerular filtration rate. Exposure concentration data of 7 major PM2.5 constituents were assessed by satellite remote sensing. Logistic regression models were used to estimate the effect of each PM2.5 constituent exposure on CKD. The weighted quantile sum regression was used to estimate the effect of mixed exposure to all constituents. PM2.5 constituents had positive correlations with CKD (per standard deviation increase), with ORs (95% CIs) of 1.20 (1.02-1.41) for black carbon, 1.27 (1.07-1.51) for ammonium, 1.29 (1.08-1.55) for nitrate, 1.20 (1.01-1.43) for organic matter, 1.25 (1.06-1.46) for sulfate, 1.30 (1.11-1.54) for soil particles, and 1.63 (1.39-1.91) for sea salt. Mixed exposure to all constituents was positively associated with CKD (1.68, 1.32-2.11). Sea salt was the constituent with the largest weight (0.36), which suggested its importance in the PM2.5-CKD association, followed by nitrate (0.32), organic matter (0.18), soil particles (0.10), ammonium (0.03), BC (0.01). Sulfate had the least weight (< 0.01). Long-term exposure to PM2.5 sea salt and nitrate may contribute more than other constituents in increasing CKD risk, providing new evidence and insights for PM2.5-CKD mechanism research and air pollution control strategy.


Subject(s)
Ammonium Compounds , Renal Insufficiency, Chronic , Humans , Adult , Nitrates , China/epidemiology , Particulate Matter/toxicity , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/epidemiology , Soil , Sulfates , Sulfur Oxides
4.
Nat Commun ; 15(1): 3416, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649713

ABSTRACT

In-depth comprehension and modulation of the electronic structure of the active metal sites is crucial to enhance their intrinsic activity of electrocatalytic oxygen evolution reaction (OER) toward anion exchange membrane water electrolyzers (AEMWEs). Here, we elaborate a series of amorphous metal oxide catalysts (FeCrOx, CoCrOx and NiCrOx) with high performance AEMWEs by high-valent chromium dopant. We discover that the positive effect of the transition from low to high valence of the Co site on the adsorption energy of the intermediate and the lower oxidation barrier is the key factor for its increased activity by synchrotron radiation in-situ techniques. Particularly, the CoCrOx anode catalyst achieves the high current density of 1.5 A cm-2 at 2.1 V and maintains for over 120 h with attenuation less than 4.9 mV h-1 in AEMWE testing. Such exceptional performance demonstrates a promising prospect for industrial application and providing general guidelines for the design of high-efficiency AEMWEs systems.

5.
Proc Natl Acad Sci U S A ; 121(11): e2400272121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437534

ABSTRACT

The endothelial lining of cerebral microvessels is damaged relatively early after cerebral ischemia/reperfusion (I/R) injury and mediates blood-brain barrier (BBB) disruption, neurovascular injury, and long-term neurological deficits. I/R induces BBB leakage within 1 h due to subtle structural alterations in endothelial cells (ECs), including reorganization of the actin cytoskeleton and subcellular redistribution of junctional proteins. Herein, we show that the protein peroxiredoxin-4 (Prx4) is an endogenous protectant against endothelial dysfunction and BBB damage in a murine I/R model. We observed a transient upregulation of Prx4 in brain ECs 6 h after I/R in wild-type (WT) mice, whereas tamoxifen-induced, selective knockout of Prx4 from endothelial cells (eKO) mice dramatically raised vulnerability to I/R. Specifically, eKO mice displayed more BBB damage than WT mice within 1 to 24 h after I/R and worse long-term neurological deficits and focal brain atrophy by 35 d. Conversely, endothelium-targeted transgenic (eTG) mice overexpressing Prx4 were resistant to I/R-induced early BBB damage and had better long-term functional outcomes. As demonstrated in cultures of human brain endothelial cells and in animal models of I/R, Prx4 suppresses actin polymerization and stress fiber formation in brain ECs, at least in part by inhibiting phosphorylation/activation of myosin light chain. The latter cascade prevents redistribution of junctional proteins and BBB leakage under conditions of Prx4 repletion. Prx4 also tempers microvascular inflammation and infiltration of destructive neutrophils and proinflammatory macrophages into the brain parenchyma after I/R. Thus, the evidence supports an indispensable role for endothelial Prx4 in safeguarding the BBB and promoting functional recovery after I/R brain injury.


Subject(s)
Blood-Brain Barrier , Ischemic Stroke , Animals , Humans , Mice , Atrophy , Endothelial Cells , Endothelium , Peroxiredoxins
6.
Sci Total Environ ; 919: 170756, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340816

ABSTRACT

A plausible approach to remediating petroleum contaminated soil is the integration of chemical and biological treatments. Using appropriate chemical oxidation, the integrated remediation can be effectively achieved to stimulate the biodegradation process, consequently bolstering the overall remediation effect. In this study, an integrated biological-chemical-biological strategy was proposed. Both conventional microbial degradation techniques and a modified Fenton method were employed, and the efficacy of this strategy on crude oil contaminated soil, as well as its impact on pollutant composition, soil environment, and soil microorganism, was assessed. The results showed that this integrated remediation realized an overall 68.3 % removal rate, a performance 1.7 times superior to bioremediation alone and 2.1 times more effective than chemical oxidation alone, elucidating that the biodegradation which had become sluggish was invigorated by the judicious application of chemical oxidation. By optimizing the positioning of chemical treatment, the oxidization was allowed to act predominantly on refractory substances like resins, thus effectively enhancing pollutant biodegradability. Concurrently, this oxidating maneuver contributed to a significant increase in concentrations of dissolvable nutrients while maintaining appropriate soil pH levels, thereby generating favorable growth conditions for microorganism. Moreover, attributed to the proliferation and accumulation of degrading bacteria during the initial bioremediation phase, the microbial growth subsequent to oxidation showed rapid resurgence and the relative abundance of typical petroleum-degrading bacteria, particularly Proteobacteria, was substantially increased, which played a significant role in enhancing overall remediation effect. Our research validated the feasibility of biological-chemical-biological strategy and elucidated its correlating mechanisms, presenting a salient reference for the further studies concerning the integrated remediation of petroleum contaminated soil.


Subject(s)
Environmental Pollutants , Petroleum , Soil Pollutants , Petroleum/metabolism , Soil/chemistry , Soil Pollutants/analysis , Soil Microbiology , Biodegradation, Environmental , Hydrocarbons/metabolism
7.
Biomater Sci ; 12(4): 837-862, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38196386

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic disorder that affects millions of individuals worldwide. However, current drug therapies for IBD are plagued by significant side effects, low efficacy, and poor patient compliance. Consequently, there is an urgent need for novel therapeutic approaches to alleviate IBD. Hydrogels, three-dimensional networks of hydrophilic polymers with the ability to swell and retain water, have emerged as promising materials for drug delivery in the treatment of IBD due to their biocompatibility, tunability, and responsiveness to various stimuli. In this review, we summarize recent advancements in hydrogel-based drug delivery systems for the treatment of IBD. We first identify three pathophysiological alterations that need to be addressed in the current treatment of IBD: damage to the intestinal mucosal barrier, dysbiosis of intestinal flora, and activation of inflammatory signaling pathways leading to disequilibrium within the intestines. Subsequently, we discuss in depth the processes required to prepare hydrogel drug delivery systems, from the selection of hydrogel materials, types of drugs to be loaded, methods of drug loading and drug release mechanisms to key points in the preparation of hydrogel drug delivery systems. Additionally, we highlight the progress and impact of the hydrogel-based drug delivery system in IBD treatment through regulation of physical barrier immune responses, promotion of mucosal repair, and improvement of gut microbiota. In conclusion, we analyze the challenges of hydrogel-based drug delivery systems in clinical applications for IBD treatment, and propose potential solutions from our perspective.


Subject(s)
Hydrogels , Inflammatory Bowel Diseases , Humans , Hydrogels/pharmacology , Inflammatory Bowel Diseases/drug therapy , Intestines , Intestinal Mucosa/metabolism , Drug Delivery Systems/methods
8.
J Mater Chem B ; 12(5): 1372-1378, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240560

ABSTRACT

Owing to the efficient non-radiative relaxation by the free rotation of the B-phenyl moiety, monophenyl substituted aza-BODIPY on the boron centre with near-infrared absorption has high photothermal conversion efficiency, which is highly desirable for a photothermal therapy agent.


Subject(s)
Boron Compounds , Photothermal Therapy , Rotation
9.
Nanoscale ; 16(6): 2868-2876, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38235504

ABSTRACT

The design of highly efficient and robust platinum-based electrocatalysts is pivotal for proton exchange membrane fuel cells (PEMFC). One of the long-standing issues for PEMFC is the rapid deactivation of the catalyst under working conditions. Here, we report a simple synthesis strategy for ultrafine PtCo alloy nanoparticles loaded on a unique carbon support derived from a zeolitic imidazolate framework-67 (ZIF-67) and Ketjen Black (KB) composite, exhibiting a remarkable catalytic performance toward the oxygen reduction reaction (ORR) and PEMFC. Benefitting from the N-doping and wide pore size distribution of the composite carbon supports, the growth of PtCo nanoparticles can be evenly restricted, leading to a uniform distribution. The Pt-integrated catalyst delivers an outstanding electrochemical performance with a mass activity that is 8.6 times higher than that of the commercial Pt/C catalyst. Impressively, the accelerated durability test (ADT) demonstrates that the hybrid carbon support can significantly enhance the durability. Theoretical simulations highlight the synergistic contribution between the supports and the PtCo nanoparticles. Moreover, hydrogen-oxygen fuel cells assembled with the catalyst exhibited a high power density of 1.83 W cm-2 at 4 A cm-2. These results provide a new opportunity to design advanced catalysts for PEMFC.

10.
Front Optoelectron ; 17(1): 1, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224409

ABSTRACT

Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 µm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 µm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6-1252.7 nm is demonstrated. This work proves PDF's advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.

11.
Carbohydr Polym ; 326: 121508, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142061

ABSTRACT

The clinical treatment of enterocutaneous fistula is challenging and causes significant patient discomfort. Fibrin gel can be used to seal tubular enterocutaneous fistulas, but it has low strength and poor digestion resistance. Based on in situ bioprinting and the anti-digestive properties of xanthan gum (XG), we used carboxymethyl chitosan (CMC) and xanthan gum modified by grafted glycidyl methacrylate (GMA) and aldehyde (GCX) as the ink to print a double network hydrogel that exhibited high strength and an excellent anti-digestive performance. In addition, in vitro studies confirmed the biocompatibility, degradability, and self-healing of hydrogels. In our rabbit tubular enterocutaneous fistula model, the in situ printed hydrogel resisted corrosion due to the intestinal fluid and acted as a scaffold for intestinal mucosal cells to proliferate on its surface. To summarize, in situ bioprinting GCX/CMC double network hydrogel can effectively block tubular enterocutaneous fistulas and provide a stable scaffold for intestinal mucosal regeneration.


Subject(s)
Bioprinting , Intestinal Fistula , Animals , Humans , Rabbits , Hydrogels , Polysaccharides, Bacterial/therapeutic use
12.
Animal Model Exp Med ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38158631

ABSTRACT

INTRODUCTION: This study aimed to establish an animal model of open abdomen (OA) through temporary abdominal closure via different techniques. METHODS: Adult male Sprague-Dawley rats were randomly divided into three groups: group A (OA with polypropylene mesh alone); group B (OA with polypropylene mesh combined with a patch); and group C (OA with polypropylene mesh and a sutured patch). Vital signs, pathophysiological changes, and survival rates were closely monitored in the rats for 7 days after surgery. Abdominal X-rays and histopathological examinations were performed to assess abdominal organ changes and wound healing. RESULTS: The results showed no significant difference in mortality rates among the three groups (p > 0.05). However, rats in group B exhibited superior overall condition, cleaner wounds, and a higher rate of wound healing compared to the other groups (p < 0.05). Abdominal X-rays indicated that varying degrees of distal intestinal obstruction in all groups. Histopathological examinations revealed fibrous hyperplasia, inflammatory cell infiltration, neovascularization, and collagen deposition in all groups. Group B demonstrated enhanced granulation tissue generation, neovascularization, and collagen deposition compared to the other groups (p < 0.05). CONCLUSIONS: Polypropylene mesh combined with patches is the most suitable method for establishing an animal model of OA. This model successfully replicated the pathological and physiological changes in postoperative patients with OA, specifically the progress of abdominal skin wound healing. It provides a practical and reliable animal model for OA research.

13.
Front Immunol ; 14: 1284057, 2023.
Article in English | MEDLINE | ID: mdl-37928550

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly heterogeneous breast tumor type that is highly malignant, invasive, and highly recurrent. Ferroptosis is a unique mode of programmed cell death (PCD) at the morphological, physiological, and molecular levels, mainly characterized by cell death induced by iron-dependent accumulation of lipid peroxides, which plays a substantial role in a variety of diseases, including tumors and inflammatory diseases. TNBC cells have been reported to display a peculiar equilibrium metabolic profile of iron and glutathione, which may increase the sensitivity of TNBC to ferroptosis. TNBC possesses a higher sensitivity to ferroptosis than other breast cancer types. Ferroptosis also occurred between immune cells and tumor cells, suggesting that regulating ferroptosis may remodel TNBC by modulating the immune response. Many ferroptosis-related genes or molecules have characteristic expression patterns and are expected to be diagnostic targets for TNBC. Besides, therapeutic strategies based on ferroptosis, including the isolation and extraction of natural drugs and the use of ferroptosis inducers, are urgent for TNBC personalized treatment. Thus, this review will explore the contribution of ferroptosis in TNBC progression, diagnosis, and treatment, to provide novel perspectives and therapeutic strategies for TNBC management.


Subject(s)
Ferroptosis , Triple Negative Breast Neoplasms , Humans , Apoptosis , Cell Death , Iron
14.
Nat Commun ; 14(1): 7856, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030636

ABSTRACT

High glucose-induced vascular endothelial injury is a major pathological factor involved in non-healing diabetic wounds. To interrupt this pathological process, we design an all-peptide printable hydrogel platform based on highly efficient and precise one-step click chemistry of thiolated γ-polyglutamic acid, glycidyl methacrylate-conjugated γ-polyglutamic acid, and thiolated arginine-glycine-aspartate sequences. Vascular endothelial growth factor 165-overexpressed human umbilical vein endothelial cells are printed using this platform, hence fabricating a living material with high cell viability and precise cell spatial distribution control. This cell-laden hydrogel platform accelerates the diabetic wound healing of rats based on the unabated vascular endothelial growth factor 165 release, which promotes angiogenesis and alleviates damages on vascular endothelial mitochondria, thereby reducing tissue hypoxia, downregulating inflammation, and facilitating extracellular matrix remodeling. Together, this study offers a promising strategy for fabricating tissue-friendly, high-efficient, and accurate 3D printed all-peptide hydrogel platform for cell delivery and self-renewable growth factor therapy.


Subject(s)
Diabetes Mellitus , Hydrogels , Humans , Rats , Animals , Hydrogels/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Polyglutamic Acid , Click Chemistry , Wound Healing/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Diabetes Mellitus/pathology , Printing, Three-Dimensional
15.
JHEP Rep ; 5(12): 100912, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37954486

ABSTRACT

Background & Aims: Existing evidence suggests that long-term exposure to ambient fine particulate pollution (PM2.5) may increase metabolic dysfunction-associated fatty liver disease (MAFLD) risk. However, there is still limited evidence on the association of PM2.5 constituents with MAFLD. Therefore, this study explores the associations between the five main chemical constituents of PM2.5 and MAFLD to provide more explicit information on the liver exposome. Methods: A total of 76,727 participants derived from the China Multi-Ethnic Cohort, a large-scale epidemic survey in southwest China, were included in this study. Multiple linear regression models were used to estimate the pollutant-specific association with MAFLD. Weighted quantile sum regression was used to evaluate the joint effect of the pollutant-mixture on MAFLD and identify which constituents contribute most to it. Results: Three-year exposure to PM2.5 constituents was associated with a higher MAFLD risk and more severe liver fibrosis. Odds ratios for MAFLD were 1.480, 1.426, 1.294, 1.561, 1.618, and 1.368 per standard deviation increase in PM2.5, black carbon, organic matter, ammonium, sulfate, and nitrate, respectively. Joint exposure to the five major chemical constituents was also positively associated with MAFLD (odds ratio 1.490, 95% CI 1.360-1.632). Nitrate contributed most to the joint effect of the pollutant-mixture. Further stratified analyses indicate that males, current smokers, and individuals with a high-fat diet might be more susceptible to ambient PM2.5 exposure than others. Conclusions: Long-term exposure to PM2.5 and its five major chemical constituents may increase the risk of MAFLD. Nitrate might contribute most to MAFLD, which may provide new clues for liver health. Males, current smokers, and participants with high-fat diets were more susceptible to these associations. Impact and implications: This large-scale epidemiologic study explored the associations between constituents of fine particulate pollution (PM2.5) and metabolic dysfunction-associated fatty liver disease (MAFLD), and further revealed which constituents play a more important role in increasing the risk of MAFLD. In contrast to previous studies that examined the effects of PM2.5 as a whole substance, this study carefully explored the health effects of the individual constituents of PM2.5. These findings could (1) help researchers to identify the specific particles responsible for hepatotoxicity, and (2) indicate possible directions for policymakers to efficiently control ambient air pollution, such as targeting the sources of nitrate pollution.

16.
Cell Mol Life Sci ; 80(11): 337, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37897551

ABSTRACT

Hypervirulent Klebsiella pneumoniae (hvKP) is a highly lethal opportunistic pathogen that elicits more severe inflammatory responses compared to classical Klebsiella pneumoniae (cKP). In this study, we investigated the interaction between hvKP infection and the anti-inflammatory immune response gene 1 (IRG1)-itaconate axis. Firstly, we demonstrated the activation of the IRG1-itaconate axis induced by hvKP, with a dependency on SYK signaling rather than STING. Importantly, we discovered that exogenous supplementation of itaconate effectively inhibited excessive inflammation by directly inhibiting SYK kinase at the 593 site through alkylation. Furthermore, our study revealed that itaconate effectively suppressed the classical activation phenotype (M1 phenotype) and macrophage cell death induced by hvKP. In vivo experiments demonstrated that itaconate administration mitigated hvKP-induced disturbances in intestinal immunopathology and homeostasis, including the restoration of intestinal barrier integrity and alleviation of dysbiosis in the gut microbiota, ultimately preventing fatal injury. Overall, our study expands the current understanding of the IRG1-itaconate axis in hvKP infection, providing a promising foundation for the development of innovative therapeutic strategies utilizing itaconate for the treatment of hvKP infections.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Dysbiosis/drug therapy , Klebsiella Infections/drug therapy , Inflammation/drug therapy , Alkylation , Syk Kinase
17.
J Agric Food Chem ; 71(44): 16815-16826, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37856846

ABSTRACT

Sugarcane, a major sugar and energy crop worldwide faces an increasing demand for higher yields. Identifying yield-related markers and candidate genes is valuable for breeding high-yield varieties using molecular techniques. In this work, seven yield-related traits were evaluated in a diversity panel of 159 genotypes, derived from Tripidium arundinaceum, Saccharum spontaneum, and modern sugarcane genotypes. All traits exhibited significant genetic variance with high heritability and high correlations. Genetic diversity analysis reveals a genomic decay of 23 kb and an average single nucleotide polymorphism (SNP) number of 25,429 per genotype. These 159 genotypes were divided into 4 subgroups. Genome-wide association analysis identified 47 SNPs associated with brix, spanning 36 quantitative trait loci (QTLs), and 138 SNPs for other traits across 104 QTLs, covering all 32 chromosomes. Interestingly, 12 stable QTLs associated with yield-related traits were identified, which contained 35 candidate genes. This work provides markers and candidate genes for marker-assisted breeding to improve sugarcane yields.


Subject(s)
Quantitative Trait Loci , Saccharum , Genome-Wide Association Study , Saccharum/genetics , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide , Edible Grain
18.
Opt Express ; 31(19): 30542-30549, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710594

ABSTRACT

Raman fiber laser (RFL) has been widely adopted in astronomy, optical sensing, imaging, and communication due to its unique advantages of flexible wavelength and broadband gain spectrum. Conventional RFLs are generally based on silica fiber. Here, we demonstrate that the phosphosilicate fiber has a broader Raman gain spectrum as compared to the common silica fiber, making it a better choice for broadband Raman conversion. By using the phosphosilicate fiber as gain medium, we propose and build a tunable RFL, and compare its operation bandwidth with a silica fiber-based RFL. The silica fiber-based RFL can operate within the Raman shift range of 4.9 THz (9.8-14.7 THz), whereas in the phosphosilicate fiber-based RFL, efficient lasing is achieved over the Raman shift range of 13.7 THz (3.5-17.2 THz). The operation bandwidths of the two RFLs are also calculated theoretically. The simulation results agree well with experimental data, where the operation bandwidth of the phosphosilicate fiber-based RFL is more than twice of that of the silica fiber-based RFL. This work reveals the phosphosilicate fiber's unique advantage in broadband Raman conversion, which has great potential in increasing the reach and capacity of optical communication systems.

19.
Ecotoxicol Environ Saf ; 263: 115371, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37643506

ABSTRACT

BACKGROUND: Exposure to particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) may increase the risk of 10-year atherosclerotic cardiovascular disease (ASCVD) risk. While PM2.5 is comprised of various components, the evidence on the correlation of its components with 10-year ASCVD risk and which component contributes most remains limited. METHODS: Data were derived from the baseline assessments of China Multi-Ethnic Cohort (CMEC). In total, 69,722 individuals aged 35-74 years were included into this study. The annual average concentration of PM2.5 and its components (black carbon, ammonium, nitrate, sulfate, organic matter, soil particles, and sea salt) were estimated by satellite remote sensing and chemical transport models. The ASCVD risk of individuals was calculated by the equations from the China-PAR Project (prediction for ASCVD risk in China). The relationship between single exposure to PM2.5 and its components and predicted 10-year ASCVD risk was assessed using the logistic regression model. The effect of joint exposure was estimated, and the most significant contributor was identified using the weighted quantile sum approach. RESULTS: Totally 69,722 participants were included, of which 95.8 % and 4.2 % had low and high 10-year ASCVD risk, respectively. Per standard deviation increases in the 3-year average concentration of PM2.5 mass (odds ratio [OR] 1.23, 95 % confidence interval [CI]: 1.12-1.35), black carbon (1.21, 1.11-1.33), ammonium (1.21, 1.10-1.32), nitrate (1.25, 1.14-1.38), organic matter (1.29, 1.18-1.42), sulfate (1.17, 1.07-1.28), and soil particles (1.15, 1.04-1.26) were related to high 10-year ASCVD risk. The overall effect (1.19, 1.11-1.28) of the PM2.5 components was positively associated with 10-year ASCVD risk, and organic matter had the most contribution to this relationship. Female participants were more significantly impacted by PM2.5, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles compared to others. CONCLUSION: Long-term exposure to PM2.5 mass, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles were positively associated with high 10-year ASCVD risk, while sea salt exhibited a protective effect. Moreover, the organic matter might take primary responsibility for the relationship between PM2.5 and 10-year ASCVD risk. Females were more susceptible to the adverse effect.


Subject(s)
Atherosclerosis , Particulate Matter , Adult , Female , Humans , Atherosclerosis/epidemiology , Atherosclerosis/etiology , Carbon/analysis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/ethnology , East Asian People , Nitrates/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Particulate Matter/chemistry , Soil , Soot/analysis , Sulfates/analysis , Male
20.
Int J Soc Psychiatry ; 69(8): 2018-2030, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37528555

ABSTRACT

BACKGROUND: In the pandemic era, stressful life events (StressLEv) aggravated the impact on mental health. However, youths exhibited different responses to StressLEv because of diverse coping strategies, social support, and emotional intelligence before and after the pandemic. AIMS: To explore the changes in StressLEv and coping strategies before and after the coronavirus 2019 pandemic, as well as report the associations among mental health and related factors in a sample of Chinese youths experiencing the post-pandemic era. METHOD: A cross-sectional study using convenience sampling was conducted from July 1 to August 30, 2022, covering 3,038 youths aged 14 to 25 in China. Multiple logistic regression was conducted for crude odds ratios (ORs) and adjusted ORs. The relationships between lasso-selected variables was examined using structural equation modeling. RESULTS: More StressLEv and limited coping strategies were reported after the pandemic. In the post-pandemic era, BSI-positive youths (youths diagnosed as considered case by Brief Symptom Inventory, BSI) reported more StressLEv (BSI-positive: mean = 75.47; BSI-negative: mean = 28.69), less social support (BSI-positive: mean = 31.81; BSI-negative: mean = 39.22), and lower emotional intelligence (BSI-positive: mean = 75.34; BSI-negative: mean = 89.42). The willingness to engage in mental health counseling (OR: no vs. yes: 1.89; uncertain vs. yes: 4.42), being punished (OR: 1.27), adaptation problems (OR: 1.06), task-oriented coping (OR: 0.95), social diversion coping (OR: 0.90), objective support (OR: 0.90), utilization of social support (OR: 0.81), and regulation of emotion in oneself (OR: 0.94) were associated with mental health. Structural equation modeling supported our theoretical framework. CONCLUSIONS: Pandemic-induced mental health problems should not be ignored. The proposed response mechanisms could guide the development of effective interventions, which can help youths better cope with StressLEv and maintain good mental health.


Subject(s)
Coronavirus Infections , Coronavirus , Humans , Adolescent , Mental Health , Cross-Sectional Studies , Pandemics , Adaptation, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...