Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.858
1.
Cell Prolif ; : e13656, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773710

Melatonin (MLT) is a circadian hormone that reportedly influences the development and cyclic growth of secondary hair follicles; however, the mechanism of regulation remains unknown. Here, we systematically investigated the role of MLT in hair regeneration using a hair depilation mouse model. We found that MLT supplementation significantly promoted hair regeneration in the hair depilation mouse model, whereas supplementation of MLT receptor antagonist luzindole significantly suppressed hair regeneration. By analysing gene expression dynamics between the MLT group and luzindole-treated groups, we revealed that MLT supplementation significantly up-regulated Wnt/ß-catenin signalling pathway-related genes. In-depth analysis of the expression of key molecules in the Wnt/ß-catenin signalling pathway revealed that MLT up-regulated the Wnt/ß-catenin signalling pathway in dermal papillae (DP), whereas these effects were facilitated through mediating Wnt ligand expression levels in the hair follicle stem cells (HFSCs). Using a DP-HFSCs co-culture system, we verified that MLT activated Wnt/ß-catenin signalling in DPs when co-cultured with HFSCs, whereas supplementation of DP cells with MLT alone failed to activate Wnt/ß-catenin signalling. In summary, our work identified a critical role for MLT in promoting hair regeneration and will have potential implications for future hair loss treatment in humans.

2.
Cell Prolif ; : e13659, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773866

Aberrant A-to-I RNA editing, mediated by ADAR1 has been found to be associated with increased tumourigenesis and the development of chemotherapy resistance in various types of cancer. Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive malignancy with a poor prognosis, and overcoming chemotherapy resistance poses a significant clinical challenge. This study aimed to clarify the roles of ADAR1 in tumour resistance to cisplatin in iCCA. We discovered that ADAR1 expression is elevated in iCCA patients, particularly in those resistant to cisplatin, and associated with poor clinical outcomes. Downregulation of ADAR1 can increase the sensitivity of iCCA cells to cisplatin treatment, whereas its overexpression has the inverse effect. By integrating RNA sequencing and Sanger sequencing, we identified BRCA2, a critical DNA damage repair gene, as a downstream target of ADAR1 in iCCA. ADAR1 mediates the A-to-I editing in BRCA2 3'UTR, inhibiting miR-3157-5p binding, consequently increasing BRCA2 mRNA and protein levels. Furthermore, ADAR1 enhances cellular DNA damage repair ability and facilitates cisplatin resistance in iCCA cells. Combining ADAR1 targeting with cisplatin treatment markedly enhances the anticancer efficacy of cisplatin. In conclusion, ADAR1 promotes tumour progression and cisplatin resistance of iCCA. ADAR1 targeting could inform the development of innovative combination therapies for iCCA.

3.
Water Res ; 257: 121695, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38723352

Wolframite (FeWO4), a typical polyoxometalate, serves as an auspicious candidate for heterogeneous catalysts, courtesy of its high chemical stability and electronic properties. However, the electron-deficient surface-active Fe species in FeWO4 are insufficient to cleave H2O2 via Fe redox-mediated Fenton-like catalytic reaction. Herein, we doped Sulfur (S) atom into FeWO4 catalysts to refine the electronic structure of FeWO4 for H2O2 activation and sulfamethoxazole (SMX) degradation. Furthermore, spin-state reconstruction on S-doped FeWO4 was found to effectively refine the electronic structure of Fe in the d orbital, thereby enhancing H2O2 activation. S doping also accelerated electron transfer during the conversion of sulfur species, promoting the cycling of Fe(III) to Fe(II). Consequently, S-doped FeWO4 bolstered the Fenton-like reaction by nearly two orders of magnitude compared to FeWO4. Significantly, the developed S-doped FeWO4 exhibited a remarkable removal efficiency of approximately 100% for SMX within 40 min in real water samples. This underscores its extensive pH adaptability, robust catalytic stability, and leaching resistance. The matrix effects of water constituents on the performance of S-doped FeWO4 were also investigated, and the results showed that a certain amount of Cl-, SO42-, NO3-, HCO3- and PO43- exhibited negligible effects on the degradation of SMX. Theoretical calculations corroborate that the distinctive spin-state reconstruction of Fe center in S-doped FeWO4 is advantageous for H2O2 decomposition. This discovery offers novel mechanistic insight into the enhanced catalytic activity of S doping in Fenton-like reactions and paves the way for expanding the application of FeWO4 in wastewater treatment.

4.
Article En | MEDLINE | ID: mdl-38723775

PURPOSE: Radiation-induced dermatitis (RD) is a common side effect of therapeutic ionizing radiation that can severely affect patient quality of life. This study aimed to develop a risk prediction model for the occurrence of RD in patients with cervical carcinoma undergoing chemoradiotherapy using electronic medical records (EMRs). METHODS: Using electronic medical records, the clinical data of patients who underwent simultaneous radiotherapy and chemotherapy at a tertiary cancer hospital between 2017 and 2022 were retrospectively collected, and the patients were divided into two groups: a training group and a validation group. A predictive model was constructed to predict the development of RD in patients who underwent concurrent radiotherapy and chemotherapy for cervical cancer. Finally, the model's efficacy was validated using a receiver operating characteristic (ROC) curve. RESULTS: The incidence of radiation dermatitis was 89.5% (560/626) in the entire cohort, 88.6% (388/438) in the training group, and 91.5% (172/188) in the experimental group. The nomogram was established based on the following factors: age, the days between the beginning and conclusion of radiotherapy, the serum albumin (ALB) after chemoradiotherapy, the use of single or multiple drugs for concurrent chemotherapy, and the total dose of afterloading radiotherapy. Internal and external verification indicated that the model had good discriminatory ability. Overall, the model achieved an AUC of .66. CONCLUSIONS: The risk of RD in patients with cervical carcinoma undergoing chemoradiotherapy is high. A risk prediction model can be developed for RD in cervical carcinoma patients undergoing chemoradiotherapy, based on over 5 years of EMR data from a tertiary cancer hospital.

5.
Eur J Pharmacol ; : 176644, 2024 May 14.
Article En | MEDLINE | ID: mdl-38754535

Metabolic dysfunction-associated fatty liver disease is a metabolic disease caused by abnormal lipid accumulation in the liver. Excessive lipid accumulation results in liver inflammation and fibrosis. Previous studies have demonstrated that the chalcone licochalcone D, which is isolated from Glycyrrhiza inflata Batal, has anti-tumor and anti-inflammatory effects. The present study explored whether licochalcone D can regulate lipid accumulation in fatty liver cells. FL83B hepatocytes were incubated with oleic acid to establish a fatty liver cell model, and then treated with licochalcone D to evaluate the molecular mechanisms underlying the regulation of lipid metabolism. In addition, male C57BL/6 mice were fed a methionine/choline-deficient diet to induce an animal model of metabolic dysfunction-associated steatohepatitis (MASH) and given 5 mg/kg licochalcone D by intraperitoneal injection. In cell experiments, licochalcone D significantly reduced lipid accumulation in fatty liver cells and reduced sterol regulatory element-binding protein 1c expression, blocking fatty acid synthase production. Licochalcone D increased adipose triglyceride lipase and carnitine palmitoyltransferase 1 expression, enhancing lipolysis and fatty acid ß-oxidation, respectively. Licochalcone D also significantly increased SIRT-1 and AMPK phosphorylation, reducing acetyl-CoA carboxylase phosphorylation and inhibiting fatty acid synthesis. Licochalcone D also increased the fusion of autophagosomes and lysosomes to promote autophagy, reducing oil droplet accumulation in fatty liver cells. In the animal experiments, licochalcone D effectively reduced the number of lipid vacuoles and degree of fibrosis in liver tissue and inhibited liver inflammation. Thus, licochalcone D can improve MASH by reducing lipid accumulation, inhibiting inflammation, and increasing autophagy.

6.
Materials (Basel) ; 17(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38730741

In this study, an effective numerical model was developed for the calculation of the deformation of laser-welded 3 mm 304L stainless steel plates with different gaps (0.2 mm, 0.5 mm, and 1.0 mm). The welding deformation would become larger when the welding gaps increased, and the largest deformation values along the Z direction, of 4 mm, were produced when the gap value was 1.0 mm. A larger plastic strain region was generated in the location near the weld seam, since higher plastic deformation had occurred. In addition, the tensile stress model was also applied at the plastic strain zone and demonstrated that a larger welding gap led to a wider residual stress area. Based on the above results, inherent deformations for butt and corner joints were calculated according to inherent strain theory, and the welding formation for the complex structure was calculated with different gaps. The numerical results demonstrated that a larger deformation was also produced with a larger welding gap and that it could reach the highest value of 10.1 mm. This proves that a smaller welding gap should be adopted during the laser welding of complex structures to avoid excessive welding deformation.

7.
BMC Public Health ; 24(1): 1289, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734652

BACKGROUND: Under a changing climate, the joint effects of temperature and relative humidity on tuberculosis (TB) are poorly understood. To address this research gap, we conducted a time-series study to explore the joint effects of temperature and relative humidity on TB incidence in China, considering potential modifiers. METHODS: Weekly data on TB cases and meteorological factors in 22 cities across mainland China between 2011 and 2020 were collected. The proxy indicator for the combined exposure levels of temperature and relative humidity, Humidex, was calculated. First, a quasi-Poisson regression with the distributed lag non-linear model (DLNM) was constructed to examine the city-specific associations between humidex and TB incidence. Second, a multivariate meta-regression model was used to pool the city-specific effect estimates, and to explore the potential effect modifiers. RESULTS: A total of 849,676 TB cases occurred in the 22 cities between 2011 and 2020. Overall, a conspicuous J-shaped relationship between humidex and TB incidence was discerned. Specifically, a decrease in humidex was positively correlated with an increased risk of TB incidence, with a maximum relative risk (RR) of 1.40 (95% CI: 1.11-1.76). The elevated RR of TB incidence associated with low humidex (5th humidex) appeared on week 3 and could persist until week 13, with a peak at approximately week 5 (RR: 1.03, 95% CI: 1.01-1.05). The effects of low humidex on TB incidence vary by Natural Growth Rate (NGR) levels. CONCLUSION: A J-shaped exposure-response association existed between humidex and TB incidence in China. Humidex may act as a better predictor to forecast TB incidence compared to temperature and relative humidity alone, especially in regions with higher NGRs.


Humidity , Tuberculosis , China/epidemiology , Humans , Tuberculosis/epidemiology , Incidence , Temperature , Cities/epidemiology , Climate Change
8.
Article En | MEDLINE | ID: mdl-38709826

Loss of cochlear hair cells (HCs) leads to permanent hearing loss in mammals, and regenerative medicine is regarded as an ideal strategy for hearing recovery. Limited genetic and pharmaceutical approaches for HC regeneration have been established, and the existing strategies cannot achieve recovery of auditory function. A promising target to promote HC regeneration is MEK/ERK signaling because dynamic shifts in its activity during the critical stages of inner ear development have been observed. Here, we first showed that MEK/ERK signaling is activated specifically in supporting cells (SCs) after aminoglycoside-induced HC injury. We then selected 4 MEK/ERK signaling inhibitors, and PD0325901 (PD03) was found to induce the transdifferentiation of functional supernumerary HCs from SCs in the neonatal mammalian cochlear epithelium. We next found that PD03 facilitated the generation of HCs in inner ear organoids. Through genome-wide high-throughput RNA sequencing and verification, we found that the Notch pathway is the downstream target of MEK/ERK signaling. Importantly, delivery of PD03 into the inner ear induced mild HC regeneration in vivo. Our study thus reveals the importance of MEK/ERK signaling in cell fate determination and suggests that PD03 might serve as a new approach for HC regeneration.

9.
Article En | MEDLINE | ID: mdl-38710592

BACKGROUND AND AIM: The study aims to introduce a novel indicator, effective withdrawal time (WTS), which measures the time spent actively searching for suspicious lesions during colonoscopy and to compare WTS and the conventional withdrawal time (WT). METHODS: Colonoscopy video data from 472 patients across two hospitals were retrospectively analyzed. WTS was computed through a combination of artificial intelligence (AI) and manual verification. The results obtained through WTS were compared with those generated by the AI system. Patients were categorized into four groups based on the presence of polyps and whether resections or biopsies were performed. Bland Altman plots were utilized to compare AI-computed WTS with manually verified WTS. Scatterplots were used to illustrate WTS within the four groups, among different hospitals, and across various physicians. A parallel box plot was employed to depict the proportions of WTS relative to WT within each of the four groups. RESULTS: The study included 472 patients, with a median age of 55 years, and 57.8% were male. A significant correlation with manually verified WTS (r = 0.918) was observed in AI-computed WTS. Significant differences in WTS/WT among the four groups were revealed by the parallel box plot (P < 0.001). The group with no detected polyps had the highest WTS/WT, with a median of 0.69 (interquartile range: 0.40, 0.97). WTS patterns were found to be varied between the two hospitals and among senior and junior physicians. CONCLUSIONS: A promising alternative to traditional WT for quality control and training assessment in colonoscopy is offered by AI-assisted computation of WTS.

10.
Biomaterials ; 309: 122610, 2024 May 11.
Article En | MEDLINE | ID: mdl-38749307

Precise image-guided cancer immunotherapy holds immense potential in revolutionizing cancer treatment. The strategies facilitating activatable imaging and controlled therapeutics are highly desired yet to be developed. Herein, we report a new pyroptosis nanoinducer that integrates aggregation-induced emission luminogen (AIEgen) and DNA methyltransferase inhibitor with hypoxia-responsive covalent organic frameworks (COFs) for advanced image-guided cancer immunotherapy. We first synthesize and compare three donor-acceptor type AIEgens featuring varying numbers of electron-withdrawing units, and find that the incorporation of two acceptors yields the longest response wavelength and most effective photodynamic therapy (PDT) property, surpassing the performance of analogs with one or three acceptor groups. A COF-based nanoplatform containing AIEgen and pyroptosis drug is successfully constructed via the one-pot method. The intra-COF energy transfer significantly quenches AIEgen, in which both fluorescence and PDT properties greatly enhance upon hypoxia-triggered COF degradation. Moreover, the photodynamic process exacerbates hypoxia, accelerating pyroptosis drug release. The nanoagent enables sensitive delineation of tumor site through in situ activatable fluorescence signature. Thanks to the exceptional ROS production capabilities and hypoxia-accelerating drug release, the nanoagent not only inhibits primary tumor growth but also impedes the progression of distant tumors in 4T1 tumor-bearing mice through potent pyroptosis-mediated immune response. This research introduces a novel strategy for achieving activatable phototheranostics and self-accelerating drug release for synergetic cancer immunotherapy.

11.
Article En | MEDLINE | ID: mdl-38752993

Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a stable subclade with the nearby species Pedobacter mongoliensis 1-32T, as well as the genera Pararcticibacter and Arcticibacter. Furthermore, P. mongoliensis 1-32T formed a separate deep-branching lineage and did not form a cluster with members of the genus Pedobacter. The average nucleotide identity and digital DNA-DNA hybridization values between SYSU D00823T and SYSU D00873T and related species were well below the thresholds for species delineation (<81.0 % and <24.0 %, respectively). The genomes of SYSU D00823T and SYSU D00873T were 6.19 and 6.43 Mbp in size with 40.4 % and 40.5 % DNA G+C contents, respectively. The predominant fatty acids (>10 %) of SYSU D00823T and SYSU D00873T were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). Menaquinone-7 was the only respiratory quinone. The major polar lipids were phosphatidylethanolamine, glycosphingolipid, aminoglycolipid/glycolipid, aminophospholipid and three or four unidentified polar lipids. These data indicated that strains SYSU D00823T and SYSU D00873T should be assigned to two novel species of a new genus within the family Sphingobacteriaceae, for which the names Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov. are proposed. The type strains are SYSU D00823T (=CGMCC 1.18630T=MCCC 1K04973T=KCTC 82278T) and SYSU D00873T (=CGMCC 1.18629T=MCCC 1K04974T=KCTC 82281T), respectively. Accordingly, the reclassification of P. xinjiangensis as Desertivirga xinjiangensis comb. nov., and P. mongoliensis as Paradesertivirga mongoliensis gen. nov., comb. nov. are also proposed.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Desert Climate , Fatty Acids , Pedobacter , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Pedobacter/genetics , Pedobacter/classification , Pedobacter/isolation & purification , Fatty Acids/chemistry , China , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Nucleic Acid Hybridization
12.
Transl Res ; 271: 26-39, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734063

Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to ß-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.

13.
Se Pu ; 42(5): 452-457, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736388

The applications of organic-amine desulfurization have steadily increased owing to its high efficiency, low cost, and low energy consumption. Different proportions of organic amines exert different effects on sulfur dioxide removal. Therefore, the accurate determination of different organic amines in the desulfurization solution is of great importance. The ion-chromatographic method for the detection of organic amines does not require a derivatization step, has simple pretreatment procedures, and allows for the simultaneous determination of many types of organic amines. In this study, a method based on ion chromatography was developed for the simultaneous determination of ethanolamine (MEA), diethylethanolamine (DEEA), n-methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), hydroxyethylethylenediamine (AEEA), piperazine (PZ), n-hydroxyethylpiperazine (HEPZ), and diethylenetriamine (DETA). The separation efficiency of the eight organic amines in different types of columns, leaching solutions, and column temperatures were compared. The determination was performed using an IonPac CS17 column with column temperature of 35 ℃ and gradient leaching with methyl sulfonic acid (MSA) solution via the inhibition conductance method. Samples of the desulfurization solution were analyzed using ultrapure water filtered through a 0.22 µm nylon microporous filter membrane and an OnGuard Ⅱ RP column; thus, the pretreatment steps are simple. The eight organic amines showed a good linear relationship within a certain concentration range, and the coefficient of determinations (R2) were greater than 0.998. The limits of detection (LODs) and quantification (LOQs) were determined from the mass concentrations of the organic amines corresponding to signal-to-noise ratios (S/N) of 3 and 10, respectively. LODs of 0.02-0.08 mg/L and LOQs of 0.07-0.27 mg/L were determined from a 1.0 µL sample injection. The actual recoveries ranged from 93.0% to 111%, and the relative standard deviations (RSDs, n=5) ranged from 0.31% to 1.2%. The results indicated that the proposed method has good accuracy and precision; thus, it is suitable for the determination of various organic amines in desulfurization solution.

14.
Anim Cells Syst (Seoul) ; 28(1): 237-250, 2024.
Article En | MEDLINE | ID: mdl-38741950

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of ß-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.

15.
RSC Adv ; 14(22): 15270-15280, 2024 May 10.
Article En | MEDLINE | ID: mdl-38741957

Herein, an ultra-low dielectric porous polyimide (PPI) composite film was fabricated by non-solvent induced phase separation (NIPS). High-performance carbon nitride nanosheets grafted by heptadecafluoro-1,1,2,2-tetradecyl-trimethoxysilane (CNNF) were incorporated into the PPI film to enhance thermomechanical and hydrophobic properties. The effects of non-solvent and filler content on the porous morphology, dielectric properties, hydrophobicity and thermomechanical properties of films were investigated. The porous morphology of the CNNF/PPI film changed from the coexistence of pipe-like and spongy structure via H2O, to a tightly-stacked porous structure via MeOH as non-solvent. The dielectric constants ε' of 0.5 wt%-CNNF/PPI(H2O) and 0.5 wt%-CNNF/PPI(MeOH) were 1.56 and 1.69 at 1 MHz, respectively, which were ∼50% lower than that of the original PI film (ε' = 3.33). With the introduction of CNNF, the water contact angle (WCA) of CNNF/PPI(H2O) increased from 66° to 107° and that of CNNF/PPI(MeOH) increased from 92° to 120°. Simultaneously, the storage modulus E' of 2 wt%-CNNF/PPI(MeOH) reached its highest value of ∼881 MPa, which was ∼350 MPa higher than that of PPI(MeOH), together with an enhancement in Tg. This method confirmed a promising prospect for the utilization of porous PI substrates in integrated circuits and microelectronic devices.

16.
Front Plant Sci ; 15: 1370593, 2024.
Article En | MEDLINE | ID: mdl-38742217

Establishing cultivated grassland in the Qinghai-Tibet Plateau region is an effective method to address the conflict between vegetation and livestock. However, the high altitude, low temperature, and arid climate in the region result in slow regeneration and susceptibility to degradation of mixed cultivation grassland containing perennial legumes and gramineous plants. Therefore, we aim to through field experiments, explore the feasibility of establishing mixed cultivation grassland of Poaceae species in the region by utilizing two grass species, Poa pratensis L. and Puccinellia tenuiflora. By employing a mixture of P. pratensis and P. tenuiflora to establish cultivated grassland, we observed significant changes in forage yield over time. Specifically, during the 3rd to 6th years of cultivation, the yield in the mixed grassland was higher than in monocultures. It exceeded the yield of monoculture P. tenuiflora by 19.38% to 29.14% and surpassed the monoculture of P. pratensis by 17.18% to 62.98%. Through the analysis of soil physicochemical properties and soil microbial communities in the cultivated grassland, the study suggests that the mixed grassland with Poaceae species can enhance soil enzyme activity and improve soil microbial communities. Consequently, this leads to increased soil nutrient levels, enhanced nitrogen fixation efficiency, and improved organic phosphorus conversion efficiency. Therefore, establishing mixed grasslands with Poaceae species in the Qinghai-Tibet Plateau region is deemed feasible.

17.
Hum Cell ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743204

Mesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application. Single-cell sequencing technology emerges as a powerful tool to address these challenges, offering precise dissection of complex cellular samples. It uncovers the genetic structure and gene expression status of individual contained cells on a massive scale and reveals the heterogeneity among these cells. It links the molecular characteristics of MSCs with their clinical applications, contributing to the advancement of regenerative medicine. With the development and cost reduction of single-cell analysis techniques, sequencing technology is now widely applied in fundamental research and clinical trials. This study aimed to review the application of single-cell sequencing in MSC research and assess its prospects.

18.
Article En | MEDLINE | ID: mdl-38747701

Two Gram-stain-negative strains, designed SYSU M86414T and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C), and in the presence of 0-10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414T and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The DNA G+C content of strains SYSU M86414T and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus Flagellimonas and strain SYSU M86414T showed the highest 16S rRNA gene sequence similarity to Flagellimonas marinaquae JCM 11811T (98.83 %), followed by Flagellimonas aurea BC31-1-A7T (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to F. marinaquae JCM 11811T (98.76 %) and F. aurea BC31-1-A7T (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414T and SYSU M84420 should be considered to represent a novel species of the genus Flagellimonas, for which the name Flagellimonas halotolerans sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414T (=GDMCC 1.3806T=KCTC 102040T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , China , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , Fatty Acids/analysis , Seawater/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phosphatidylethanolamines , Molecular Sequence Data
19.
Cell Death Discov ; 10(1): 230, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740736

Studies have shown that hepatic stellate cells (HSCs) and interleukin-17a (IL-17a) play important roles in liver tumorigenesis. In addition, fibroblast activation protein-α (FAP) has been shown to be a key regulator of hepatic stellate cell activation. In this study, in vivo and in vitro experiments were performed to verify the promoting effects of IL-17a administration, IL-17a overexpression, and FAP upregulation in HSCs on liver fibrosis and liver tumorigenesis. The cleavage under targets & release using nuclease (CUT&RUN) technique was used to verify the binding status of STAT3 to the FAP promoter. The in vitro studies showed that IL-17a activated HSCs and promoted HCC development and progression. FAP and IL-17a overexpression also activated HSCs, promoted HCC cell proliferation and migration, and inhibited HCC cell apoptosis. The in vivo studies suggested that IL-17a and FAP overexpression in HSCs facilitated liver tumor development and progression. The CUT&RUN results indicated that FAP expression was regulated by STAT3, which could bind to the FAP promoter region and regulate its transcription status. We concluded that IL-17a promoted HCC by increasing FAP expression in HSCs via activation of the STAT3 signaling pathway.

20.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741159

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


G-Quadruplexes , Mitochondria , G-Quadruplexes/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Genome, Mitochondrial , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Platinum/pharmacology , Animals
...