Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1407329, 2024.
Article in English | MEDLINE | ID: mdl-39301314

ABSTRACT

Objective: Despite several observational studies attempting to investigate the potential association between type 1 diabetes mellitus (T1DM) and the risk of digestive cancers, the results remain controversial. The purpose of this study is to examine whether there is a causal relationship between T1DM and the risk of digestive cancers. Methods: We conducted a Mendelian randomisation (MR) study to systematically investigate the effect of T1DM on six most prevalent types of digestive cancers (oesophageal cancer, stomach cancer, hepatocellular carcinoma, biliary tract cancer, pancreatic cancer, and colorectal cancer). A total of 1,588,872 individuals were enrolled in this analysis, with 372,756 being the highest number for oesophageal cancer and 3,835 being the lowest for pancreatic cancer. Multiple MR methods were performed to evaluate the causal association of T1DM with the risk of six site-specific cancers using genome-wide association study summary data. Sensitivity analyses were also conducted to assess the robustness of the observed associations. Results: We selected 35 single nucleotide polymorphisms associated with T1DM as instrumental variables. Our findings indicate no significant effect of T1DM on the overall risk of oesophageal cancer (OR= 0.99992, 95% CI: 0.99979-1.00006, P= 0.2866), stomach cancer (OR=0.9298,95% CI: 0.92065-1.09466, P= 0.9298), hepatocellular carcinoma (OR= 0.99994,95% CI: 0.99987-1.00001, P= 0.1125), biliary tract cancer (OR=0.97348,95% CI: 0.8079-1.1729, P= 0.7775)), or pancreatic cancer (OR =1.01258, 95% CI: 0.96243-1.06533, P= 0.6294). However, we observed a causal association between T1DM and colorectal cancer (OR=1.000, 95% CI: 1.00045-1.0012, P<0.001), indicating that T1DM increases the risk of colorectal cancer. We also performed sensitivity analyses, which showed no heterogeneity or horizontal pleiotropy. For the reverse MR from T1DM to six digestive cancers, no significant causal relationships were identified. Conclusions: In this MR study with a large number of digestive cancer cases, we found no evidence to support the causal role of T1DM in the risk of oesophageal cancer, stomach cancer, hepatocellular carcinoma, biliary tract cancer, or pancreatic cancer. However, we found a causal positive association between T1DM and colorectal cancer. Further large-scale prospective studies are necessary to replicate our findings.


Subject(s)
Diabetes Mellitus, Type 1 , Digestive System Neoplasms , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Digestive System Neoplasms/genetics , Digestive System Neoplasms/epidemiology , Digestive System Neoplasms/etiology , Risk Factors , Genetic Predisposition to Disease
2.
Biomol Biomed ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217442

ABSTRACT

The novel deubiquitinase enzyme, motif interacting with ubiquitin-containing novel DUB family-1 (MINDY1), is highly expressed in liver cancer tissues and plays a crucial role in maintaining the stemness of liver cancer cells. Programmed death ligand-1 (PD-L1) is an immunosuppressive molecule overexpressed by tumour cells. The potential role of MINDY1 in inhibiting the stemness of liver cancer cells by deubiquitinating PD-L1 has not yet been reported. To investigate the mechanism by which MINDY1 mediates immune escape in liver cancer through the regulation of PD-L1 ubiquitination, we examined the expression levels of MINDY1 and PD-L1 in liver cancer and adjacent tissues from 50 hepatocellular carcinoma (HCC) patients using protein imprinting and immunohistochemistry. We analyzed the relationship between the expression levels of MINDY1 and PD-L1 in liver cancer tissues and their correlation with the 5-year tumor-free survival rates of patients. Subsequently, MINDY1 expression was knocked down in Huh7 cells using small interfering RNA (siRNA) interference or upregulated through transfection with a MINDY1 overexpression plasmid. The effects of MINDY1 knockdown or overexpression on the proliferation, apoptosis, migration, and invasion of HCC cells, as well as the regulation of PD-L1 binding and ubiquitination, were assessed. The 5-year tumor-free survival rates were significantly lower in both the high MINDY1 expression group and the high PD-L1 expression group (χ2 = 4.919 and 13.158, respectively). A significant difference in survival was observed between the high and low MINDY1 expression groups (χ2= 27.415). MINDY1 was found to directly interact with PD-L1, with MINDY1 gene knockdown promoting PD-L1 ubiquitination and MINDY1 overexpression inhibiting PD-L1 ubiquitination. All comparisons yielded statistically significant results (P < 0.05). In conclusion, MINDY1 inhibits the malignant progression of liver cancer by inhibiting PD-L1 ubiquitination and mediating immune escape.

3.
J Mol Recognit ; : e3101, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221493

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV-vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 µM) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 × 105 Lmol-1), the quenching constant (5.41 × 105 Lmol-1), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.

4.
BMC Musculoskelet Disord ; 25(1): 665, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182017

ABSTRACT

BACKGROUND: Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis. Recently, autophagy has been found to be related with the development of various diseases, including osteoporosis and osteoblast differentiation regulations. BTB and CNC homology 1 (BACH1) was a previously confirmed regulator for osteoblast differentiation, but whether it's could involve in glucocorticoid-induced human bone mesenchymal stem cells (hBMSCs) differentiation and autophagy regulation remain not been elucidated. METHODS: hBMSCs were identified by flow cytometry method, and its differentiation ability were measured by ARS staining, oil O red, and Alcian blue staining assays. Gene and proteins were quantified via qRT-PCR and western blot assays, respectively. Autophagy activity was determined using immunofluorescence. ChIP and dual luciferase assay validated the molecular interactions. RESULTS: The data revealed that isolated hBMSCs exhibited positive of CD29/CD44 and negative CD45/CD34. Moreover, BACH1 was abated gradually during osteoblast differentiation of hBMSCs, while dexamethasone (Dex) treatment led to BACH1 upregulation. Loss of BACH1 improved osteoblast differentiation and activated autophagy activity in Dex-challenged hBMSCs. Autophagy-related proteins (ATG3, ATG4, ATG5, ATG7, ATG12) were repressed after Dex treatment, while ATG3, ATG7 and BECN1 could be elevated by BACH1 knockdown, especially ATG7. Moreover, BACH1 could interact ATG7 promoter region to inhibit its transcription. Co-inhibition of ATG7 greatly overturned the protective roles of BACH1 loss on osteoblast differentiation and autophagy in Dex-induced hBMSCs. CONCLUSION: Taken together, our results demonstrated that silencing of BACH1 mitigated Dex-triggered osteogenic differentiation inhibition by transcriptionally activating ATG7-mediated autophagy, suggesting that BACH1 may be a therapeutic target for GIOP treatment.


Subject(s)
Autophagy , Basic-Leucine Zipper Transcription Factors , Cell Differentiation , Dexamethasone , Glucocorticoids , Mesenchymal Stem Cells , Osteoblasts , Osteogenesis , Humans , Autophagy/drug effects , Cell Differentiation/drug effects , Osteogenesis/drug effects , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/adverse effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Dexamethasone/pharmacology , Cells, Cultured , Osteoporosis/chemically induced , Osteoporosis/genetics , Osteoporosis/pathology
5.
Genes (Basel) ; 15(8)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39202449

ABSTRACT

Protein and nucleic acid binding site prediction is a critical computational task that benefits a wide range of biological processes. Previous studies have shown that feature selection holds particular significance for this prediction task, making the generation of more discriminative features a key area of interest for many researchers. Recent progress has shown the power of protein language models in handling protein sequences, in leveraging the strengths of attention networks, and in successful applications to tasks such as protein structure prediction. This naturally raises the question of the applicability of protein language models in predicting protein and nucleic acid binding sites. Various approaches have explored this potential. This paper first describes the development of protein language models. Then, a systematic review of the latest methods for predicting protein and nucleic acid binding sites is conducted by covering benchmark sets, feature generation methods, performance comparisons, and feature ablation studies. These comparisons demonstrate the importance of protein language models for the prediction task. Finally, the paper discusses the challenges of protein and nucleic acid binding site prediction and proposes possible research directions and future trends. The purpose of this survey is to furnish researchers with actionable suggestions for comprehending the methodologies used in predicting protein-nucleic acid binding sites, fostering the creation of protein-centric language models, and tackling real-world obstacles encountered in this field.


Subject(s)
Protein Binding , Binding Sites , Computational Biology/methods , Proteins/chemistry , Proteins/metabolism , Proteins/genetics , Nucleic Acids/metabolism , Nucleic Acids/chemistry , Humans
6.
J Vasc Access ; : 11297298241270537, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149903

ABSTRACT

INTRODUCTION: The distal radial artery presents a particular challenge for puncture and catheterization due to its diminutive size, tortuous path, and tendency to spasm, increasing the risk of procedural failure and injury. Ultrasound guidance improves success rates and reduces risk in radial artery catheterization. This study evaluates the efficacy and safety of a refined dynamic needle tip positioning technique for distal radial artery access. METHODS: One hundred twelve patients were randomized to either the modified dynamic needle tip positioning technique (MDNTP) or palpation guidance groups (palpation group), each with 56 participants. The primary outcomes were the success rate of the initial puncture and overall puncture success rate, while secondary outcomes included procedural time and complications such as puncture site hematoma and radial artery occlusion within 24 h. RESULTS: The MDNTP group exhibited superior initial puncture success (71.43% vs 46.43%, p < 0.05) and fewer puncture attempts (median 1 (1, 2) vs 2 (1, 4), p < 0.05), resulting in a higher overall puncture success rate (98.21% vs 87.50%, p = 0.028). Notably, sheath insertion times were significantly shorter (17 (12, 21) s vs 57 (32, 100) s, p = 0.001) and the Sheath insertion success rate was higher (96.43% vs 82.14%, p = 0.015) in the MDNTP group. Furthermore, the incidence of puncture site hematomas was reduced (5.36% vs 19.64%, p = 0.022), although puncture time was longer (60 (28, 116) s vs 40 (15, 79) s, p = 0.033). Despite these differences, total procedural time and the incidence of radial artery occlusion at 24 h postoperatively were comparable between the two groups. CONCLUSION: The MDNTP technique boosts the success of distal radial artery puncture and catheterization, reducing the risk of complications associated with the procedure.

7.
Orphanet J Rare Dis ; 19(1): 278, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044243

ABSTRACT

OBJECTIVE: This study aimed to investigate the clinical features, pathogenic gene variants, and potential genotype-phenotype correlations in Chinese patients with hereditary spherocytosis (HS). METHODS: Retrospective analysis of clinical data and molecular genetic characteristics was conducted on patients diagnosed with HS at Jiangxi Provincial Children's Hospital, the Second Affiliated Hospital of Nanchang University, Pingxiang People's Hospital and The Third People's Hospital of Jingdezhen between November 2017 and June 2023. Statistical analyses were performed to compare and analyze the red blood cell (RBC), hemoglobin (HB), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) data between and within groups based on different mutations and age groups (< 14 and ≥ 14 years). RESULTS: A total of 34 HS patients were included in this study, comprising 22 children (64.70%) and 12 adults (35.30%). The probands who underwent genetic testing were derived from 34 unrelated families. Thirty-two variants were tested and 9 of them are novel. Eighteen cases had ANK1 variants, 15 had SPTB variants, and 1 had SLC4A1 variant. 25 patients performed core family members underwent genetic testing, 17 (68.0%, 17/25) were de novo, 5 (20.0%, 5/25) were maternally inherited, and 3 (12.0%, 3/25) were paternally inherited. ANK1-HS patients exhibited more severe anemia compared to cases with SPTB-HS, showing lower levels of RBC and HB (P < 0.05). Anemia was more severe in patients diagnosed in childhood than in those diagnosed in adulthood. Within the ANK1-HS group, MCH levels in adult patients was significantly higher than those in children (P < 0.05), while there were no significant differences in RBC, HB, MCV, and MCHC levels between two groups. Adult patients with SPTB-HS had significantly higher levels of RBC, HB, and MCH than pediatric patients (P < 0.05), while MCV and MCHC levels showed no significant statistical differences. CONCLUSION: This study conducted a comparative analysis of phenotypic characteristics and molecular genetics in adult and pediatric patients diagnosed with HS, confirming that pediatric ANK1-HS patients exhibit a more severe anemic phenotype compared to SPTB-HS patients, while the severity of HS in adults does not significantly differ between different causative genes.


Subject(s)
Ankyrins , Spherocytosis, Hereditary , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Anion Exchange Protein 1, Erythrocyte/genetics , Ankyrins/genetics , East Asian People/genetics , Erythrocyte Indices , Mutation , Retrospective Studies , Spectrin/genetics , Spherocytosis, Hereditary/genetics
8.
Biomolecules ; 14(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39062595

ABSTRACT

Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.


Subject(s)
Antineoplastic Agents , Epigenesis, Genetic , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Epigenesis, Genetic/drug effects , RNA, Untranslated/genetics , RNA/metabolism , Animals
9.
Sci Rep ; 14(1): 16794, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039115

ABSTRACT

Acute kidney injury (AKI) is one of the most important lethal factors for patients admitted to intensive care units (ICUs), and timely high-risk prognostic assessment and intervention are essential to improving patient prognosis. In this study, a stacking model using the MIMIC-III dataset with a two-tier feature selection approach was developed to predict the risk of in-hospital mortality in ICU patients admitted for AKI. External validation was performed using separate MIMIC-IV and eICU-CRD. The area under the curve (AUC) was calculated using the stacking model, and features were selected using the Boruta and XGBoost feature selection methods. This study compares the performance of a stacking model using two-tier feature selection with a model using single-tier feature selection (XGBoost: 85; Boruta: 83; two-tier: 0.91). The predictive effectiveness of the stacking model was further validated by using different datasets (Validation 1: 0.83; Validation 2: 0.85) and comparing it with a simpler model and traditional clinical scores (SOFA: 0.65; APACH IV: 0.61). In addition, this study combined interpretable techniques and causal inference to analyze the causal relationship between features and predicted outcomes.


Subject(s)
Acute Kidney Injury , Hospital Mortality , Intensive Care Units , Humans , Acute Kidney Injury/mortality , Male , Female , Prognosis , Middle Aged , Aged , Risk Assessment/methods , Area Under Curve , Risk Factors
10.
Article in English | MEDLINE | ID: mdl-38822974

ABSTRACT

Vascular remodeling is the adaptive response of the vessel wall to physiological and pathophysiological changes, closely linked to vascular diseases. Vascular smooth muscle cells (VSMCs) play a crucial role in this process. Pyroptosis, a form of programmed cell death characterized by excessive release of inflammatory factors, can cause phenotypic transformation of VSMCs, leading to their proliferation, migration, and calcification-all of which accelerate vascular remodeling. Inhibition of VSMC pyroptosis can delay this process. This review summarizes the impact of pyroptosis on VSMCs and the pathogenic role of VSMC pyroptosis in vascular remodeling. We also discuss inhibitors of key proteins in pyroptosis pathways and their effects on VSMC pyroptosis. These findings enhance our understanding of the pathogenesis of vascular remodeling and provide a foundation for the development of novel medications that target the control of VSMC pyroptosis as a potential treatment strategy for vascular diseases.

11.
J Environ Manage ; 361: 121239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815422

ABSTRACT

The roles of plateau pika (Ochotona coronae) in the Tibetan Plateau are often controversial, because it is often regarded as a destructive pest or an ecosystem engineer. Here a meta-analysis using 72 paired observations was conducted to examine whether the impacts of plateau pika on environmental quality (i.e., plant and soil properties) depend on population density in the Tibetan Plateau. Pika population density was used as a proxy for disturbance intensity. The pika disturbance intensity was divided into five groups based on the number of burrows, including low disturbance intensity (LD) (9-30 burrows per ha), medium disturbance intensity (MD) (31-100 burrows per ha), high disturbance intensity (HD) (101-170 burrows per ha), extreme disturbance intensity (ED) (171-240 burrows per ha) and uncontrolled (or excessive) disturbance intensity (UD) (>241 burrows per ha). Given that sample sizes in some of the groups are small (especially for the HD), we further pooled the disturbance groups including the LD-MD and HD-UD. Overall, relative to control (i.e., no disturbing), there was a great increase (80.3%) in aboveground biomass under the LD-MD, whereas a decrease of 41.1% occurred under the HD-UD. At the same time, plant coverage, species richness, height, and belowground biomass greatly decreased only in the HD-UD. Furthermore, the effect size of plant coverage, species richness, and aboveground biomass also declined with pika burrow density significantly. With regard to soil properties, there was a significant increase in soil organic carbon, ammonium nitrogen, and soil organic carbon stock under the LD-MD, whereas a decrease under the HD-UD. In addition, soil total nitrogen, total potassium, and nitrate nitrogen increased at the LD-MD and HD-UD. Nevertheless, the effect size of these soil properties (with >20 observations) was not related to pika burrow density. In summary, there is an implication that the low and moderate disturbance of pikas is beneficial to maintain and promote ecosystem functioning in the Tibetan grasslands. In the future pikas' eradication policy should be reconsidered in alpine grassland management.


Subject(s)
Ecosystem , Lagomorpha , Tibet , Animals , Biomass , Soil/chemistry , Population Density
12.
Article in Chinese | MEDLINE | ID: mdl-38686485

ABSTRACT

Allergic rhinitis is a chronic nasal mucosal inflammation characterized by upper airway hyperresponsiveness, involving a variety of immune cells and inflammatory mediators. Drugs, immunotherapy, and surgical operation are the principal treatments at present. The study found that mesenchymal stem cells have the ability of immune regulation and have a promising clinical application in the treatment of allergic rhinitis. In this review, the action mechanism of mesenchymal stem cells, the immunomodulatory effect of mesenchymal stem cells on the key cells of allergic rhinitis, and the challenges of clinical application are reviewed, to provide new directions for the treatment of allergic rhinitis.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Nasal Mucosa , Rhinitis, Allergic , Humans , Mesenchymal Stem Cells/cytology , Rhinitis, Allergic/therapy , Mesenchymal Stem Cell Transplantation/methods , Nasal Mucosa/cytology
13.
Sci Rep ; 14(1): 8101, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582868

ABSTRACT

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Rats , Male , Animals , Hedgehog Proteins , MicroRNAs/genetics , MicroRNAs/therapeutic use , Rats, Sprague-Dawley , Matrix Metalloproteinase 13/genetics , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Chondrocytes , Injections, Intra-Articular , Inflammation , Disease Models, Animal
14.
Animals (Basel) ; 14(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672288

ABSTRACT

The mechanism of sex determination and differentiation in animals remains a central focus of reproductive and developmental biology research, and the regulation of sex differentiation in amphioxus remains poorly understood. Cytochrome P450 Family 19 Subfamily A member 1 (CYP19A1) is a crucial sex differentiation gene that catalyzes the conversion of androgens into estrogens. In this study, we identified two aromatase-like genes in amphioxus: cyp19-like1 and cyp19-like2. The cyp19-like1 is more primitive and may represent the ancestral form of cyp19 in zebrafish and other vertebrates, while the cyp19-like2 is likely the result of gene duplication within amphioxus. To gain further insights into the expression level of these two aromatase-like, we examined their expression in different tissues and during different stages of gonad development. While the expression level of the two genes differs in tissues, both are highly expressed in the gonad primordium and are primarily localized to microsomal membrane systems. However, as development proceeds, their expression level decreases significantly. This study enhances our understanding of sex differentiation mechanisms in amphioxus and provides valuable insights into the formation and evolution of sex determination mechanisms in vertebrates.

15.
Medicine (Baltimore) ; 103(17): e37611, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669405

ABSTRACT

BACKGROUND: Osteoarthritis is a common degenerative joint disease that is highly prevalent in the elderly population. Along with the occurrence of sports injuries, osteoarthritis is gradually showing a younger trend. Osteoarthritis has many causative factors, and its pathogenesis is currently unknown. Cellular senescence is a stable form of cell cycle arrest exhibited by cells in response to external stimuli and plays a role in a variety of diseases. And it is only in the last decade or so that cellular senescence has gradually become cross-linked with osteoarthritis. However, there is no comprehensive bibliometric analysis in this field. The aim of this study is to present the current status and research hotspots of cellular senescence in the field of osteoarthritis, and to predict the future trends of cellular senescence in osteoarthritis research from a bibliometric perspective. METHODS: This study included 298 records of cellular senescence associated with osteoarthritis from 2009 to 2023, with data from the Web of Science Core Collection database. CiteSpace, Scimago Graphica software, VOSviewer, and the R package "bibliometrix" software were used to analyze regions, institutions, journals, authors, and keywords to predict recent trends in cellular senescence related to osteoarthritis research. RESULTS: The number of publications related to cellular senescence associated with osteoarthritis is increasing year by year. China and the United States contribute more than 70% of the publications and are the mainstay of research in this field. Central South University is the most active institution with the largest number of publications. International Journal of Molecular Sciences is the most popular journal in the field with the largest number of publications, while Osteoarthritis and Cartilage is the most cited journal. Loeser, Richard F. is not only the most prolific author, but also the most frequently cited author, contributing greatly to the field. CONCLUSION: In the last decade or so, this is the first bibliometric study that systematically describes the current status and development trend of research on cellular senescence associated with osteoarthritis. The study comprehensively and systematically summarizes and concludes the research hotspots and development trends, providing valuable references for researchers in this field.


Subject(s)
Bibliometrics , Cellular Senescence , Osteoarthritis , Osteoarthritis/pathology , Cellular Senescence/physiology , Humans
16.
Molecules ; 29(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542935

ABSTRACT

The phase, mechanical properties, corrosion resistance, hydrophobicity, and interfacial contact resistance of Hastelloy X were investigated to evaluate its performance in proton exchange membrane fuel cells (PEMFCs). For comparison, the corresponding performance of 304 stainless steel (304SS) was also tested. Hastelloy X exhibited a single-phase face-centered cubic structure with a yield strength of 445.5 MPa and a hardness of 262.7 HV. Both Hastelloy X and 304SS exhibited poor hydrophobicity because the water contact angles were all below 80°. In a simulated PEMFC working environment (0.5 M H2SO4 + 2 ppm HF, 80 °C, H2), Hastelloy X exhibited better corrosion resistance than 304SS. At 140 N·cm-2, the interfacial contact resistance of Hastelloy X can reach as low as 7.4 mΩ·cm2. Considering its overall performance, Hastelloy X has better potential application than 304SS as bipolar plate material in PEMFCs.

17.
Small Methods ; 8(8): e2301378, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38326028

ABSTRACT

The improvement of photocatalytic activity of g-C3N4 is expected for its advanced applications but remains a challenge due to the limitations of current strategies, such as single function, inefficiency, and uneconomical. Herein, a modified g-C3N4 with improved interface properties is constructed through the modulation of the ionic microenvironment affected by ionic liquids (ILs) and exhibits a 2.3-fold enhanced photodegradation efficiency and a 3.5-fold enhanced reaction rate relative to pristine g-C3N4. It has demonstrated excellent performance in photo-therapy bacterial-infected wounds. Theoretical calculation indicated that the precursor can be regulated by designing the specific ILs microenvironment to form "ILs-Mel" clusters due to the diversity of interaction energy and electrostatic potential. The cluster results in uneven stress on the 2D plane, further inducing the reconstruction of the microstructure. The synergistic effect of cations and anions of ILs on regulating the interface properties of g-C3N4 due to the change of skeleton structure during thermolysis of ILs. The microstructure, surface, and optical-electrical properties can be adjusted by selecting different cations of ILs, and the custom-made band structure and wettability can be obtained by selecting different anions. This work provides a facile strategy to modulate the interface properties of g-C3N4 by building specific a microenvironment of precursor.


Subject(s)
Ionic Liquids , Photolysis , Wound Healing , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Wound Healing/drug effects , Nitrogen Compounds/chemistry , Nitriles/chemistry , Nitriles/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Staphylococcus aureus/drug effects , Mice , Wound Infection/drug therapy , Graphite
18.
Sci Rep ; 14(1): 4973, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424110

ABSTRACT

In China, circulating tumor DNA analysis is widely used and numerous assays are available. Systematic evaluation to help users make informed selections is needed. Nine circulating tumor DNA assays, including one benchmark assay, were evaluated using 23 contrived reference samples. There were two sample types (cell-free DNA and plasma samples), three circulating tumor DNA inputs (low, < 20 ng; medium, 20-50 ng; high, > 50 ng), two variant allele frequency ranges (low, 0.1-0.5%; intermediate, 0.5-2.5%), and four variant types (single nucleotide, insertion/deletion, structural, and copy number). Sensitivity, specificity, reproducibility, and all processes from cell-free DNA extraction to bioinformatics analysis were assessed. The test assays were generally comparable or superior to the benchmark assay, demonstrating high analytical sensitivity. Variations in circulating tumor DNA extraction and quantification efficiency, sensitivity, and reproducibility were observed, particularly at lower inputs. These findings will guide circulating tumor DNA assay choice for research and clinical studies, allowing consideration of multiple technical parameters.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Neoplasms , Humans , Circulating Tumor DNA/genetics , Reproducibility of Results , Neoplasms/genetics , DNA, Neoplasm/genetics , Cell-Free Nucleic Acids/genetics , High-Throughput Nucleotide Sequencing , Biomarkers, Tumor/genetics , Mutation
19.
Aging (Albany NY) ; 16(2): 1249-1275, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38271056

ABSTRACT

Disulfidptosis is a recently identified type of programmed cell death. It is characterized by aberrant accumulation of intracellular disulfides. The clinical implications of disulfidptosis in clear cell renal cell carcinoma (ccRCC) remain unclear. A series of bioinformatics approaches were employed to analyze ten disulfidptosis-related molecules. Firstly, the expression patterns of the disulfidptosis-related molecules were different between normal and ccRCC tissues. A comprehensive cohort of patients with ccRCC was then assembled from three public databases and subjected to cluster analysis based on disulfidptosis-related molecules. Consensus cluster analysis revealed three distinct disulfidptosis clusters. We then conducted weighted gene co-expression network analysis (WGCNA) to identify highly correlated genes. 267 hub genes were screened out through WGCNA, and three gene clusters were then determined. Finally, we identified 87 genes with prognostic value and then used them to develop a disulfidptosis scoring (DSscore) system, which was proven to independently predict survival in ccRCC. Patients in the high-DSscore group exhibited a significant survival advantage and better immunotherapeutic responses compared with those in the low-DSscore group. However, the patients in the low-DSscore group exhibited a greater degree of chemotherapeutic response. In addition, the expression of disulfidptosis-related molecules was validated by qRT-PCR, and the potential of disulfidptosis-related molecules to indicate distinct cell subtypes were validated by single-cell RNA-sequencing. In conclusion, DSscore is a promising index for predicting the prognosis and efficacy of immunotherapy in patients with ccRCC and may provide a basis for novel strategies for future studies.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Prognosis , Apoptosis , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Tumor Microenvironment
20.
J Mol Recognit ; 37(2): e3075, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191989

ABSTRACT

The binding of four alkaloids with human serum albumin (HSA) was investigated by isothermal titration calorimetry (ITC), spectroscopy and molecular docking techniques. The findings demonstrated that theophylline or caffeine can bind to HAS, respectively. The number of binding sites and binding constants are obtained. The binding mode is a static quenching process. The effects of steric hindrance, temperature, salt concentration and buffer solution on the binding indicated that theophylline and HSA have higher binding affinity than caffeine. The fluorescence and ITC results showed that the interaction between HSA and theophylline or caffeine is an entropy-driven spontaneous exothermic process. The hydrophobic force was the primary driving factor. The experimental results were consistent with the molecular docking data. Based on the molecular structures of the four alkaloids, steric hindrance might be a major factor in the binding between HSA and these four alkaloids. This study elucidates the mechanism of interactions between four alkaloids and HSA.


Subject(s)
Alkaloids , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Caffeine , Theophylline , Spectrometry, Fluorescence , Thermodynamics , Binding Sites , Calorimetry/methods , Protein Binding , Circular Dichroism
SELECTION OF CITATIONS
SEARCH DETAIL