Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
Front Plant Sci ; 15: 1343793, 2024.
Article En | MEDLINE | ID: mdl-38828225

The Unmanned Aerial Vehicle (UAV) sprayer has the advantages of high work efficiency, simple operation, and high safety factor, and has broad application prospects UAV sprayer are widely used in the agricultural field, and the application of UAV sprayer spraying technology in agriculture has provided convenience and increased profits for farmers, and has also become a research hotspot in the field of agriculture. In recent years, although research has been conducted on the feasibility and application effects of UAV sprayer spraying crown shaped plants, there have been no experiments or studies in the field of garden plants. This experiment conducted a droplet deposition experiment of UAV sprayer spraying garden plants, exploring the droplet deposition effect of UAV sprayer in the field of garden plants, and conducting experiments on the influence of spray volume and nozzle type on droplet deposition. The experimental results showed that the canopy performance of small and medium-sized garden plants was better at a flight altitude of 1.5m, a spray volume of 180L/hm2, and a flight speed of 2m/s. Reducing flight altitude, increasing spray volume, and reducing flight speed can improve the distribution of droplets in the canopy. This experiment lays the foundation for the application of UAV sprayer for the prevention and control of pests and diseases in garden plants, as well as for the application of growth regulators, and provides a basis for further innovative research in the field of garden plant application technology.

2.
Environ Sci Pollut Res Int ; 31(13): 19779-19794, 2024 Mar.
Article En | MEDLINE | ID: mdl-38366319

Comprehending the spatial-temporal characteristics, contributions, and evolution of driving factors in agricultural non-CO2 greenhouse gas (GHG) emissions at a macro level is pivotal in pursuing temperature control objectives and achieving China's strategic goals related to carbon peak and carbon neutrality. This study employs the Intergovernmental Panel on Climate Change (IPCC) carbon emissions coefficient method to comprehensively evaluate agricultural non-CO2 GHG emissions at the provincial level. Subsequently, the contributions and spatial-temporal evolution of six driving factors derived from the Kaya identity were quantitatively explored using the Logarithmic Mean Divisia Index (LMDI) and Geographical and Temporal Weighted Regression (GTWR) methods. The results revealed that the distribution of agricultural non-CO2 GHG emissions is shifting from the central provinces to the northwest regions. Moreover, the dominant driving factors of agricultural non-CO2 GHG emissions were primarily economic factor (EDL) with positive impact (cumulative promotion is 2939.61 million metric tons (Mt)), alongside agricultural production efficiency factor (EI) with negative impact (cumulative reduction is 2208.98 Mt). Influence of EDL diminished in the eastern coastal regions but significantly impacted underdeveloped regions such as the northwest and southwest. In the eastern coastal regions, EI gradually became the absolute dominant driver, demonstrating a rapid reduction effect. Additionally, a declining birth rate and rural-to-urban population migration have significantly amplified the driving effects of the population factor (RP) at a national scale. These findings, in conjunction with the disparities in geographic and socioeconomic development among provinces, can serve as a guiding framework for the development of a region-specific roadmap aimed at reducing agricultural non-CO2 GHG emissions.


Greenhouse Gases , Agriculture , Carbon Dioxide/analysis , China , Carbon , Greenhouse Effect
3.
Immun Inflamm Dis ; 12(1): e1135, 2024 Jan.
Article En | MEDLINE | ID: mdl-38270316

INTRODUCTION: Although sirtuin 3 (SIRT3) is known to be involved in dexmedetomidine (DEX)-mediated alleviation of renal ischemia and reperfusion injury, the influence of the association between DEX and SIRT3 on nephritis development remains unclear. In this study, the role of SIRT3 in DEX-mediated amelioration of inflammation and oxidative stress in nephritis as well as the possible underlying mechanism were explored in vivo and in vitro. METHODS: An animal model of glomerulonephritis was generated by injecting mice with interferon-alpha (IFNα)-expressing adenoviruses, and periodic acid-Schiff staining was then used to reveal pathogenicity-related changes in the renal tissue. Additionally, human embryonic kidney cells (HEK293) and renal mesangial cells (RMCs) were treated with IFNα to establish cell models of inflammation in vitro. RESULTS: DEX administration alleviated glomerulonephritis in the animal model and upregulated SIRT3 expression in the renal tissue. SIRT3 knockdown inhibited the renoprotective effects of DEX against nephritis. IFNα induced inflammation, oxidative stress, and apoptosis in the RMCs and HEK293 cells and reduced their growth, as evidenced by the evaluation of cytokine levels (enzyme-linked immunosorbent assay), reactive oxygen species generation, catalase and superoxide dismutase activities, nuclear factor-erythroid factor 2-related factor 2/heme oxygenase-1 signal transduction, apoptotic cell proportion, and cell viability. In addition to promoting SIRT3 expression, DEX inhibited IFNα-induced inflammation, oxidative stress, and apoptosis in these cells and promoted their viability. SIRT3 knockdown partially reversed the beneficial effects of DEX on RMCs and HEK293 cells. CONCLUSIONS: Our results suggest that DEX exhibits renoprotective activity during nephritis progression, protecting renal cells against inflammatory injury by promoting SIRT3 expression.


Dexmedetomidine , Glomerulonephritis , Nephritis , Sirtuin 3 , Animals , Humans , Mice , Dexmedetomidine/pharmacology , HEK293 Cells , Inflammation , Interferon-alpha , Oxidative Stress , Sirtuin 3/genetics
4.
Article En | MEDLINE | ID: mdl-38183966

The survival and physiological functions of polar marine organisms are impacted by global climate changes. Investigation of the adaptation mechanisms underlying biomineralization in polar organisms at low temperatures is important for understanding mineralized organismal sensitivity to climate change. Here, we performed electron probe analysis on the shields of Antarctic polychaete Sternaspis sendalli and Arctic polychaete Sternaspis buzhinskajae (Sternaspidae), and sequenced the transcriptomes of the tissues surrounding shields to examine biomineral characteristics and adaptive mechanisms in persistently cold environments. Compared to the temperate relative species, the relative abundance of iron, phosphorus, calcium, magnesium, nitrogen, sulfur and silicon in two polar sternaspid shields was similar to Sternaspis chinensis. However, the diversity and expression levels of biomineralization-related shell matrix proteins differed between the polar and temperate species, suggesting distinct molecular mechanisms underlying shield formation in cold environments. Tubulin and cyclophilin were upregulated compared to the temperate species. Furthermore, 42 positively selected genes were identified in Antarctic S. sendalli, with functions in cytoskeletal structure, DNA repair, immunity, transcription, translation, protein synthesis, and lipid metabolism. Highly expressed genes in both polar species were associated with cytoskeleton, macromolecular complexes and cellular component biosynthesis. Overall, this study reveals conserved elemental composition yet distinct biomineralization processes in the shields of polar sternaspids. The unique expression of biomineralization related genes and other cold-adaptation related genes provide molecular insights into biomineralization in cold marine environments.


Polychaeta , Animals , Polychaeta/genetics , Biomineralization , Cold Temperature , Gene Expression Profiling , Transcriptome
5.
Environ Pollut ; 343: 123169, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38128715

The antibiotic-resistant pollution in size-segregated bioaerosols from wastewater treatment plants (WWTPs) is of increasing concern due to its public health risks, but an elaborate review is still lacking. This work overviewed the profile, mobility, pathogenic hosts, source, and risks of antibiotic resistance genes (ARGs) in size-segregated bioaerosols from WWTPs. The dominant ARG type in size-segregated bioaerosols from WWTPs was multidrug resistance genes. Treatment units that equipped with mechanical facilities and aeration devices, such as grilles, grit chambers, biochemical reaction tanks, and sludge treatment units, were the primary sources of bioaerosol antibiotic resistome in WWTPs. Higher enrichment of antibiotic resistome in particulate matter with an aerodynamic diameter of <2.5 µm, was found along the upwind-downwind-WWTPs gradient. Only a small portion of ARGs in inhalable bioaerosols from WWTPs were flanked by mobile genetic elements. The pathogens with multiple drug resistance had been found in size-segregated bioaerosols from WWTPs. Different ARGs or antibiotic resistant bacteria have different aerosolization potential associated with bioaerosols from various treatment processes. The validation of pathogenic antibiotic resistance bacteria, deeper investigation of ARG mobility, emission mechanism of antibiotic resistome, and development of treatment technologies, should be systematically considered in future.


Anti-Bacterial Agents , Water Purification , Anti-Bacterial Agents/pharmacology , Wastewater , Drug Resistance, Microbial/genetics , Sewage/microbiology , Bacteria , Genes, Bacterial
6.
Environ Pollut ; 343: 123276, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38160770

The Sichuan Basin (SCB) is located in southwestern China and has a unique topography where ozone (O3) pollution is frequent during summer. Few studies have clarified the relationship between O3 and air temperature in SCB. Here, the SCB was divided into four major urban agglomerations. The weather research and forecasting model-community multiscale air quality model (WRF-CMAQ) was used to analyze the meteorology, spatial distribution characteristics of pollutants, and interactions among the urban agglomerations in the SCB. WRF-CMAQ was used to study the historical changes in the climate penalty factor (CPF) from 2015 to 2020 and the climate pathways under the SSP2-4.5 CPF in values in 2030 for the ambitious pollution NDC-goal scenario (NDC) and current-goals scenario (Current). The results show that the SCB is warmer in the summer months with prevailing northeasterly winds. Ozone accumulated in the western part of the SCB, and a high CPF of O3 concentration was most prominent in NW urban agglomeration, where the O3 concentration increased by 4.12-5.40 ppb for every 1 °C increase in air temperature. The observed CPF in the SCB in 2020 averaged 3.64 ppb/°C. The average CPF in the SCB in 2030 was 1.152 ppb/°C under the NDC scenario and 1.269 ppb/°C under the current scenario. This study is critical for understanding the relationship between O3 concentration and air temperature in China.


Air Pollutants , Air Pollution , Ozone , Ozone/analysis , Temperature , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/analysis , China
7.
ACS Appl Mater Interfaces ; 15(48): 55803-55812, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-37983520

In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability. It can form a 1:1 complex (TMB-CB[7]) with cucurbit[7]uril (CB[7]) through host-guest interactions in the aqueous solution and shows obvious fluorescence enhancement. The reactive oxygen species (ROS) including superoxide anion radical (O2·-) and singlet oxygen (1O2) generation ability of TMB-CB[7] were promoted compared with that of TMB in the aqueous solution. More interestingly, the ROS generated from TMB-CB[7] can be used as PCs for aerobic cross dehydrogenation coupling reactions and photooxidation reactions in water with high yields of 89 and 95%, respectively. Therefore, the utilization of a host-guest PS presents a novel and environmentally friendly approach for conducting photocatalyzed organic processes under ambient conditions using visible light.

8.
J Mater Chem B ; 11(46): 11035-11043, 2023 11 29.
Article En | MEDLINE | ID: mdl-37964679

Polyacrylamide hydrogel is a promising matrix in biomedical applications due to its biocompatibility, transparency and flexibility. However, its implementation in skin-attachable applications is impeded by its inherent deficiency in surface-adaptive adhesion and inadequate mechanical conformity to skin tissues. Herein, tris, a biocompatible small molecule with a triple hydrogen bonding cluster in its molecule structure, is introduced for the first time into a polyacrylamide hydrogel. This incorporation is achieved via a facile one-pot strategy, resulting in a highly stretchable hydrogel with an impressive strain capacity (2574.75 ± 28.19%), a human dermis tissue-compatible Young's modulus (27.89 ± 2.05 kPa) and an intrinsically universal adhesion capacity (16.66 ± 0.32 N). These superior properties are attributed to the elevated hydrogen bonding density and the plasticizing effect induced by tris, without compromising the hydrogel's excellent transparency (>90% transmittance). Moreover, by incorporating calcium ions into the resulting soft adhesive hydrogel, we demonstrate its utility in skin-like sensors, leading to a substantial enhancement in strain sensitivity and electrical conductivity, in conjunction with the plasticizing influence exerted by tris. This work offers a facile and environmentally friendly solution to fabricate ultra-stretchable adhesive polyacrylamide hydrogel matrixes for dynamic surfaces, even under large deformation, which can broaden their potential applications in integrated bioelectronics.


Adhesives , Hydrogels , Humans , Hydrogels/chemistry , Skin , Electronics , Electric Conductivity
9.
Chem Commun (Camb) ; 59(89): 13301-13304, 2023 Nov 07.
Article En | MEDLINE | ID: mdl-37859495

An artificial light-harvesting system (ALHS) was developed in aqueous solution by employing the electrostatic co-assembly of a tetraphenylethylene derivative modified with two sulfonate groups (TPE-BSBO) and hyperbranched polyethyleneimine (PEI) as the energy donors, and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (DBT) as the energy acceptors. The ALHS exhibits not only high efficiency in energy transfer and conversion but also a significant enhancement in the generation of reactive oxygen species (ROS), especially superoxide anion radicals (O2˙-), facilitating its utilization in photocatalytic oxidation reactions.

10.
BMJ Open ; 13(9): e073753, 2023 09 20.
Article En | MEDLINE | ID: mdl-37730390

INTRODUCTION: Despite their recent FDA(Food and Drug Administration) approval, tumour treatment fields (TTFields) have not seen acceptance as part of standard of care (SOC) for the treatment of high-grade gliomas (HGGs). Few studies have reported the clinical effect of simultaneous or sequential use of TTFields with the current SOC. However, whether TTFields are beneficial over the standard treatment remains to be established with a meta-analysis. Therefore, we here performed a systematic review and meta-analysis to understand the benefit of TTFields for patients with HGGs. METHODS AND ANALYSIS: We registered this systematic review with the PROSPERO network (registration number: CRD42023398972) and aimed to follow the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines in the study. All articles related to TTFields in glioma will be systematically searched for in the following databases since their inception until November 2023: the China National Knowledge Infrastructure, Embase, Cochrane Library, Wanfang Database, China Science Journal Database, China Biomedical Documentation Database, VIP database, Web of Science and PubMed. Article screening and data extraction will be done independently by the authors and cross-checked by two of the authors on completion. The Cochrane risk of bias assessment tool will be used for quality assessment of the included studies. Review Manager V.5.3 (Cochrane Collaboration) will be used to perform the meta-analysis. ETHICS AND DISSEMINATION: Ethical approval is not required because the data used will be obtained from published studies, and there will be no concerns about privacy. The results of this study will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42023398972.


Glioma , United States , Humans , Systematic Reviews as Topic , Meta-Analysis as Topic , Glioma/therapy , China , Databases, Factual
11.
Mar Drugs ; 21(6)2023 May 26.
Article En | MEDLINE | ID: mdl-37367652

To discover bioactive natural products from mangrove sediment-derived microbes, a chemical investigation of the two Beibu Gulf-derived fungi strains, Talaromyces sp. SCSIO 41050 and Penicillium sp. SCSIO 41411, led to the isolation of 23 natural products. Five of them were identified as new ones, including two polyketide derivatives with unusual acid anhydride moieties named cordyanhydride A ethyl ester (1) and maleicanhydridane (4), and three hydroxyphenylacetic acid derivatives named stachylines H-J (10-12). Their structures were determined by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses, while the absolute configurations were established by theoretical electronic circular dichroism (ECD) calculation. A variety of bioactive screens revealed three polyketide derivatives (1-3) with obvious antifungal activities, and 4 displayed moderate cytotoxicity against cell lines A549 and WPMY-1. Compounds 1 and 6 at 10 µM exhibited obvious inhibition against phosphodiesterase 4 (PDE4) with inhibitory ratios of 49.7% and 39.6%, respectively, while 5, 10, and 11 showed the potential of inhibiting acetylcholinesterase (AChE) by an enzyme activity test, as well as in silico docking analysis.


Polyketides , Polyketides/chemistry , Benzene Derivatives , Acetylcholinesterase/metabolism , Circular Dichroism , Fungi/metabolism , Molecular Structure
12.
J Int Med Res ; 51(1): 3000605221148146, 2023 Jan.
Article En | MEDLINE | ID: mdl-36624959

Intracranial epidermoid cysts, also known as epidermal cysts, grow slowly and may be occult. When small, epidermoid cysts are usually clinically unremarkable or cause no definitive symptoms. At typical sites, they are easily found through magnetic resonance imaging, which aids evaluation before surgery. However, in rare cases, epidermoid cysts are situated in unusual locations or transformed to malignancy, and preoperative misdiagnosis is possible. Here, the case of a 58-year-old male patient who presented with weakness in the left lower limb and was diagnosed with a malignant epidermoid cyst in the right frontoparietal lobe, right lateral ventricle, is reported. Surgery was performed to remove the tumour followed by radiotherapy, and the patient was reported to be living independently after approximately 11 months of follow-up.


Carcinoma, Squamous Cell , Epidermal Cyst , Male , Humans , Middle Aged , Epidermal Cyst/diagnostic imaging , Epidermal Cyst/surgery , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/surgery , Magnetic Resonance Imaging , Diagnostic Errors
13.
J Cancer Res Clin Oncol ; 149(2): 609-622, 2023 Feb.
Article En | MEDLINE | ID: mdl-36066620

PURPOSE: Tumor immunotherapy has the advantages of high specificity, minimal damage to the patient's body, and a long-lasting anti-tumor effect. However, due to the existence of immune escape phenomenon, the effect of anti-tumor immunotherapy is still poor. Therefore, a cancer vaccine that reverses tumor-associated immunosuppression is a very promising approach for research and treatment. METHODS: Vaccines were prepared using autologous and allogeneic tumor cells and their lysates to syngeneic tumor cell lysates as immunogens. The glioma cell proliferation, apoptosis and the secretion level of MCP-2, IFN-γ were detected to evaluate the efficacy of this treatment against glioma in vitro. In addition, a rat glioma model was established to investigate the anti-tumor effect in vivo, and evaluated its efficacy by observing the changes of CD4 + T cells, CD8 + T cells, NK cells, and the level of IL-2 and IL-10 in peripheral blood before and after treatment. RESULTS: The C6 + 9L glioma cell lysate vaccine (C6 + 9L-CL) not only inhibited the proliferation of glioma cells and promoted their apoptosis in vitro, but also significantly inhibited the tumor growth in vivo and improved the survival time of rats. In addition, the C6 + 9L-CL vaccine enhanced the anti-tumor immune response by promoting the secretion of T cell chemokines MCP-2, IFN-γ and IL-2, and by stimulating the proliferation of T cells and NK cells in peripheral blood and glioma tissues. CONCLUSION: Our findings demonstrate the inhibitory effect of molecular mimic vaccines on glioma and provided a theoretical basis for molecular mimic hybrid vaccines as a potential therapeutic approach.


Brain Neoplasms , Cancer Vaccines , Glioma , Animals , Rats , Brain Neoplasms/immunology , Brain Neoplasms/prevention & control , CD8-Positive T-Lymphocytes , Glioma/immunology , Glioma/prevention & control , Interleukin-2
14.
Front Microbiol ; 14: 1272636, 2023.
Article En | MEDLINE | ID: mdl-38370577

Ralstonia pickettii, the most critical clinical pathogen of the genus Ralstonia, has been identified as a causative agent of numerous harmful infections. Additionally, Ralstonia pickettii demonstrates adaptability to extreme environmental conditions, such as those found in drinking water. In this study, we conducted a comprehensive genomic analysis to investigate the genomic characteristics related to potential pathogenicity and adaptive evolution in drinking water environments of Ralstonia pickettii. Through phylogenetic analysis and population genetic analysis, we divided Ralstonia pickettii into five Groups, two of which were associated with drinking water environments. The open pan-genome with a large and flexible gene repertoire indicated a high genetic plasticity. Significant differences in functional enrichment were observed between the core- and pan-genome of different groups. Diverse mobile genetic elements (MGEs), extensive genomic rearrangements, and horizontal gene transfer (HGT) events played a crucial role in generating genetic diversity. In drinking water environments, Ralstonia pickettii exhibited strong adaptability, and the acquisition of specific adaptive genes was potentially facilitated by genomic islands (GIs) and HGT. Furthermore, environmental pressures drove the adaptive evolution of Ralstonia pickettii, leading to the accumulation of unique mutations in key genes. These mutations may have a significant impact on various physiological functions, particularly carbon metabolism and energy metabolism. The presence of virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance indicated the potential pathogenicity of Ralstonia pickettii, making it capable of causing multiple nosocomial infections. This study provides comprehensive insights into the potential pathogenicity and adaptive evolution of Ralstonia pickettii in drinking water environments from a genomic perspective.

15.
Article En | MEDLINE | ID: mdl-36554731

Pollution caused by PM2.5 and O3 are common environmental problems which can easily affect human health. Chengdu is a major central city in Western China, and there is little research on the regional emissions and health effects of air pollution in Chengdu. According to the Multi-resolution Emissions Inventory of the Chinese Model, 2017 (MEIC v1.3), this study compiled the air pollutant emission inventory of Chengdu. The results show that the pollutant emission of Chengdu is generally higher in winter than in summer. The southeast area of Chengdu is the key area where emissions of residential and industrial sectors are dominant. Through air quality simulation with a Weather Research and Forecasting model, coupled with the Community Multiscale Air Quality (WRF-CMAQ), the health effects of PM2.5 and O3 in winter and summer in Chengdu of 2017 were investigated. The primary pollutant in winter is PM2.5 and O3 in summer. PM2.5 pollution accounted for 351 deaths in January and July 2017, and O3 pollution accounted for 328 deaths in the same period. There were 276 deaths in rural areas and 413 in urban areas. In January and July 2017, the health economic loss caused by PM2.5 accounted for 0.0974% of the gross regional product (GDP) of Chengdu in 2017, and the health economic loss caused by O3 accounted for 0.0910%.


Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Public Health , Environmental Monitoring/methods , Air Pollution/analysis , China/epidemiology
16.
Front Pharmacol ; 13: 884822, 2022.
Article En | MEDLINE | ID: mdl-36210831

Chinese herbal medicines offer a rich source of anti-cancer drugs. Differences between the pharmacology of Chinese herbal medicines and modern synthetic chemicals hinder the development of drugs derived from herbal products. To address this challenge, novel omics approaches including transcriptomics, proteomics, genomics, metabolomics, and microbiomics have been applied to dissect the pharmacological benefits of Chinese herbal medicines in cancer treatments. Numerous Chinese herbal medicines have shown potential anti-tumor effects on different gastrointestinal (GI) cancers while eliminating the side effects associated with conventional cancer therapies. The present study aimed to provide an overview of recent research focusing on Chinese herbal medicines in GI cancer treatment, based on omics approaches. This review also illustrates the potential utility of omics approaches in herbal-derived drug discovery. Omics approaches can precisely and efficiently reveal the key molecular targets and intracellular interaction networks of Chinese herbal medicines in GI cancer treatment. This study summarizes the application of different omics-based approaches in investigating the effects and mechanisms of Chinese herbal medicines in GI cancers. Future research directions are also proposed for this area of study.

17.
Article En | MEDLINE | ID: mdl-36193144

Objective: This research aimed at better understanding the histopathological development of precancerous lesions of gastric cancer (PLGC) and organelle ultrastructure changes. Methods: Sprague-Dawley rats were randomly assigned to the model and control groups. Model rats drank N-methyl-N'-nitro-N-nitrosoguanidine solution, while control rats drank pure water ad libitum. At 1, 3, 5, 6, and 8 months after the start of feeding, eight rats were randomly chosen from each group, and gastric mucosa tissues were removed for histopathological analysis. H&E staining was applied to analyze the pathological histological structure of the rat gastric mucosa via a light microscope, and the ultrastructural changes were observed via a transmission electron microscope. Results: Gastric mucosal pathologies of model rats such as mucosal atrophy, intestinal metaplasia, inflammatory lesions, and even intraepithelial neoplasia deteriorated over time. The endoplasmic reticulum gap widened, the mitochondrial endothelial cristae were disrupted, the nuclear membrane thickened, and chromatin condensed with heterotypic alterations in the main and parietal cells. Additionally, endothelial cell enlargement and thickening of the microvascular intima were seen. Conclusion: Our research showed that the PLGC progression of rats is correlated with the pathological alteration axis of "normal gastric mucosa-gastric mucosa inflammatory changes-intestinal metaplasia with mild dysplasia-moderate to severe dysplasia." Ultrastructure analysis of model rats is compatible with the structural changes in the gastric mucosa with spleen deficiency and blood stasis. The pathological evolutionary axis and ultrastructural analysis are helpful for evaluating potential novel herbal therapies for PLGC.

18.
Comput Intell Neurosci ; 2022: 2254411, 2022.
Article En | MEDLINE | ID: mdl-35528363

Adding the adequate level of security of information systems dealing with sensitive data, privacy, or defense systems involves some form of access control. The audits performed are dealing with the determination of the allowed activities of the legal users, when attempting to access resources of the system. Usually, full access is provided after the user has been successfully authenticated through an authentication mechanism (e.g., password), while the corresponding authorization control is based on the confidentiality level of the respective resources and the authorization level assigned to each user. A very important diversification occurring in modern digital technologies is related to the identification based on blockchain technology, which is presented as a public, distributed data series, unable to modify its history and grouped in time-numbered blocks. In this work, a blockchain-based verifiable user data access control policy for secured cloud data storage is suggested for a version associated with big data in health care. It is an innovative system of applying classified access policies to secure resources in the cloud, which operates based on blockchain technology. System evaluation is carried out by studying a case in its resilience to Eclipse attack under different malicious user capabilities for routing table poisoning.


Blockchain , Cloud Computing , Computer Security , Information Storage and Retrieval , Policy
19.
Environ Sci Pollut Res Int ; 29(26): 39164-39181, 2022 Jun.
Article En | MEDLINE | ID: mdl-35098458

Despite the apparent improvement in air quality in recent years through a series of effective measures, the concentration of PM2.5 and O3 in Chengdu city remains high. And both the two pollutants can cause serious damage to human health and property; consequently, it is imperative to accurately forecast hourly concentration of PM2.5 and O3 in advance. In this study, an air quality forecasting method based on random forest (RF) method and improved ant colony algorithm coupled with back-propagation neural network (IACA-BPNN) are proposed. RF method was used to screen out highly correlated input variables, and the improved ant colony algorithm (IACA) was adopted to combine with BPNN to improve the convergence performance. Two datasets based on two different kinds of monitoring stations along with meteorological data were applied to verify the performance of this proposed model and compared with another five plain models. The results showed that the RF-IACA-BPNN model has the minimum statistical error of the mean absolute error, root mean square error, and mean absolute percentage error, and the values of R2 consistently outperform other models. Thus, it is concluded that the proposed model is suitable for air quality prediction. It was also detected that the performance of the models for the forecasting of the hourly concentrations of PM2.5 were more acceptable at suburban station than downtown station, while the case is just the opposite for O3, on account of the low variability dataset at suburban station.


Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Algorithms , Environmental Monitoring/methods , Forecasting , Humans , Neural Networks, Computer , Particulate Matter/analysis
20.
Reprod Sci ; 29(6): 1738-1748, 2022 06.
Article En | MEDLINE | ID: mdl-34846706

More than 40% of infertile men are diagnosed with oligoasthenozoospermia and the incidence is still rising, but the effective treatments are not been found until now. Astragalin, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. This study investigated the pharmacological effects of astragalin for treatment of oligoasthenozoospermia in male mice, induced by cyclophosphamide (CTX). Male mice were intraperitoneally injected by CTX (50 mg/kg), and astragalin (30 mg/kg) was given via oral gavage once daily. RNA-seq analysis highlighted astragalin upregulated gene expression of anti-apoptosis (AKT1and BCL2-XL), cell proliferation (ETV1, MAPKAPK2, and RPS6KA5) and synthesis of testosterone (STAR, CYP11A1, and PRKACB), but downregulated gene expression of cell apoptosis (BAD, BCL-2, CASPASE9, and CASPASE3) in mouse testis. Astragalin also significantly reversed the reduction in body weight, reproductive organs index, and sperm parameters (sperm concentration, viability, and motility) induced by CTX, and restored testicular abnormal histopathologic morphology induced by CTX. Furthermore, astragalin dramatically rescued the gene expression related to spermatogenesis (AKT1, BCL-2, CASPASE9, CASPASE3, MAPKAPK2, RPS6KA5, STAR, and PRKACB), and increased the level of testosterone by improving related proteins (STAR, CYP11A1, PRKACB) for oligoasthenozoospermia induced by CTX. In conclusion, astragalin may be a potential beneficial agent for oligoasthenozoospermia by increasing the testosterone levels in testis.


Kaempferols , Oligospermia , Spermatogenesis , Animals , Cyclophosphamide , Kaempferols/pharmacology , Male , Mice , Oligospermia/chemically induced , Oligospermia/drug therapy , Sperm Motility , Spermatozoa/metabolism , Testis/metabolism , Testosterone/metabolism
...