Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Curr Eye Res ; : 1-12, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780907

PURPOSE: To explore the correlation of endoplasmic reticulum stress (ERS) and oxidative stress (OS), and the protective effect of Sestrin2 (SESN2) on human lens epithelial cells (HLECs). METHODS: Tunicamycin (TM) was used to induce ERS in HLECs. 4-Phenylbutyric acid (4-PBA) was used to inhibit ERS. Eupatilin applied to HLECs as SESN2 agonist. SESN2 expression was knocked down via si-RNA in HLECs. The morphological changes of HLECs were observed by microscope. ER-tracker to evaluate ERS, ROS production assay to measure ROS, flow cytometry to calculate cell apoptosis rate. Immunofluorescence to observe Nrf2 translocation, and effects of TM or EUP on SESN2. Western blot and qPCR were used to evaluate the expression of GRP78, PERK, ATF4, CHOP, Nrf2, and SESN2 expression in HLECs with different treatment groups. RESULTS: ERS can elevate the expression of ROS and Nrf2 to induce OS. Upregulation of SESN2 was observed in ERS-mediate OS. Overexpression of SESN2 can reduce the overexpression of ERS-related protein GRP78, PERK, ATF4, proapoptotic protein CHOP, OS-related protein Nrf2, as well as ROS, and alleviate ERS injury at the same time. Whereas knockdown of SESN2 can upregulate the expression of GRP78, PERK, ATF4, CHOP, Nrf2, ROS, and deteriorate ERS damage. CONCLUSIONS: ERS can induce OS, they form a vicious cycle to induce apoptosis in HLECs, which may contribute to cataract formation. SESN2 could protect HLECs against the apoptosis by regulating the vicious cycle between ERS and OS.

2.
Ophthalmol Ther ; 12(4): 1893-1912, 2023 Aug.
Article En | MEDLINE | ID: mdl-37133707

INTRODUCTION: Posterior capsular opacification (PCO) is the most common complication of cataract surgery. In this study, we develop a model to quantitatively predict the probability of Nd:YAG laser capsulotomy for vision-threatening PCO to improve the life quality of postoperative patients. METHODS: A registry analysis of cataract procedures performed between the years 2010 and 2021. Following the screening of 16,802 patients (25,883 eyes), 9768 patients (eyes) were enrolled. The cohort was randomly divided into two groups: training (n = 6838) and validation (n = 2930). To identify relevant risk factors, univariate, multivariate, and Least Absolute Shrinkage and Selection Operator (LASSO) algorithm Cox regression analysis were employed, and a nomogram was created to demonstrate the prediction result. RESULTS: At 5 years, the overall cumulative incidence of Nd:YAG laser capsulotomy was 12.0% (1169/9768). The following variables were included in the prediction model: sex [hazard ratio (HR) = 1.53, 95% CI 1.32-1.76], age (HR = 0.71, 95% CI 0.56-0.88), intraocular lens (IOL) material (HR = 2.65, 95% CI 2.17-3.24), high myopia (HR = 2.28, 95% CI 1.90-2.75), and fibrinogen (HR = 0.79, 95% CI 0.72-0.88). In the validation cohort, the area under the curve (AUC) of 1-, 3-, and 5-year predictions for Nd:YAG laser capsulotomy were 0.702, 0.691, and 0.688, respectively. For a subgroup of patients with high myopia, the protective effect of hydrophobic IOL disappeared (HR = 0.68, 95% CI 0.51-1.12, P = 0.127). CONCLUSION: This model could predict the probability of Nd:YAG laser capsulotomy for vision-threatening PCO after cataract surgery by taking into account factors such as age, gender, IOL material, high myopia, and fibrinogen. Meanwhile, implantation of a hydrophobic IOL in individuals with high myopia did not demonstrate a protective impact against vision-threatening PCO.

3.
Diabetol Metab Syndr ; 14(1): 124, 2022 Aug 26.
Article En | MEDLINE | ID: mdl-36028852

BACKGROUND: As one of the severe complications of diabetes mellitus, diabetic retinopathy (DR) is the leading cause of blindness in the working age worldwide. Although panretinal photocoagulation (PRP) was standard treatment, PRP-treated DR still has a high risk of progression. Hence, this study aimed to assess the risk factors and establish a model for predicting worsening diabetic retinopathy (DR-worsening) within five years after PRP. METHODS: Patients who were diagnosed with severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy and treated with PRP were included, and those patients were randomly assigned to either a training or validation cohort. The multivariate logistic regression analysis was used to screen potential risk factors for DR-worsening in the training cohort. Then the model was established after including significant independent risk factors and further validated using discrimination and calibration. RESULTS: A total of 271 patients were included, and 56.46% of patients had an outcome of DR-worsening. In the training cohort (n = 135), age (odds ratio [OR] = 0.94, 95% confidence interval [CI] 0.90-0.98), baseline best corrected visual acuity (logMAR) (OR = 10.74, 95% CI 1.84-62.52), diabetic nephropathy (OR = 9.32, 95% CI 1.49-58.46), and hyperlipidemia (OR = 3.34, 95% CI 1.05-10.66) were screened out as the independent risk factors, which were incorporated into the predictive model. The area under the receiver operating characteristic curve and calibration slope in the training and validation cohort were 0.79, 0.96 (95% CI 0.60-1.31), and 0.79, 1.00 (95% CI 0.66-1.34), respectively. Two risk groups were developed depending on the best cut-off value of the predicted probability, and the actual probability was 34.90% and 82.79% in the low-risk and high-risk groups, respectively (P < 0.001). CONCLUSIONS: This study developed and internally validated a new model to predict the probability of DR-worsening after PRP treatment within five years. The model can be used as a rapid risk assessment system for clinical prediction of DR-worsening and identify individuals at a high risk of DR-worsening at an early stage and prescribe additional treatment.

4.
Adv Clin Exp Med ; 31(3): 277-284, 2022 Mar.
Article En | MEDLINE | ID: mdl-35077033

BACKGROUND: The Sirt6, one of the members of the sirtuin family, has been regarded as a key factor in the pathogenesis of myocardial infarction (MI) through its antioxidant defense mechanisms. A previous study reported that melatonin is an antioxidant drug that can act as an agent for cardioprotection in cardiac ischemia-reperfusion (I/R) injury. However, whether melatonin could protect against cardiac remodeling after myocardial injury via the Sirt6-dependent antioxidant pathway remains unknown. OBJECTIVES: To explore the protective effects and the potential mechanisms of melatonin on MI-induced injury in rats. MATERIAL AND METHODS: A cardiac remodeling model was established through left coronary artery ligation surgery. The dose of melatonin was 10 mg/kg body weight. Four weeks after the treatment for 7 successive days, the infarct size and hemodynamic parameters were evaluated. The relative mRNA level and protein level of Sirt6 were also determined. Finally, the levels of oxidative stress, including reactive oxygen species (ROS) and superoxide dismutase (SOD), were measured, and the expression of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and their corresponding phosphorylation were evaluated. RESULTS: After the treatment with melatonin, infarct size, the left ventricular end-diastolic diameter (LVEDd), and left ventricular end-systolic diameter (LVEDd) and minimum first derivative of developed pressure (min dP/dt) decreased, while left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS) and maximum first derivative of developed pressure (max dP/dt) increased in the melatonin-MI (MM) group compared to the placebo-MI (PM) group. Furthermore, the expressions of Sirt6, both in mRNA and protein level, were significantly increased in the MM group treated with melatonin, as compared to the melatonin-control (MC) group treated with melatonin. In addition, melatonin enhanced SOD activity and reduced ROS levels. At the same time, we observed that the eNOS/NO signaling pathways were activated. CONCLUSIONS: Melatonin improved cardiac function through the Sirt6-dependent antioxidant pathway in MI rats.


Melatonin , Myocardial Infarction , Animals , Antioxidants/pharmacology , Melatonin/pharmacology , Myocardial Infarction/pathology , Nitric Oxide Synthase Type III/pharmacology , Rats , Stroke Volume , Ventricular Function, Left
5.
J Am Soc Echocardiogr ; 32(7): 876-883.e11, 2019 07.
Article En | MEDLINE | ID: mdl-31029500

BACKGROUND: To facilitate differentiation between normal and abnormal values, it is necessary to correct echocardiographic measurements for physiologic variance induced by age, gender, and body size variables. METHODS: A total of 34 two-dimensional echocardiographic parameters were measured in 1,224 healthy Chinese adults with body mass index < 25.0 kg/m2. An optimized multivariate allometric model and scaling equations were first developed in 858 subjects (group A), and their reliability was then verified in the remaining 366 subjects (group B). The traditional single-variable isometric model in which parameters are linearly corrected by a single body size variable (height, weight, body mass index, or body surface area) was used for comparison. The success of correction was defined as the absence of significant correlations (r > 0.20, P < .05) between the corrected values and age or any body size variables, while maintaining high correlations (r > 0.80) between the corrected and uncorrected values. RESULTS: Before correction, all 34 parameters correlated significantly with one or more of the physiologic variables of age and body size and differed significantly between men and women on 29 parameters (85.3%) in both groups. The success rate of correction with the single-variable isometric model was only 11.0% (15 of 136 corrections due to four variable corrections used for each parameter), while use of the optimized multivariate allometric model successfully corrected all 34 parameters (100%) for physiologic variance induced by age and body size variables and eliminated the gender differences in 32 parameters (94.1%). A new set of reference values for corrected echocardiographic measurements independent of age, gender, and body size variables were established. CONCLUSIONS: The novel optimized multivariate allometric model developed in this study is superior to traditional the single-variable isometric model in the correction of echocardiographic parameters for physiologic effects of age, gender, and body size variables and thus should be encouraged in both scientific research and clinical practice.


Echocardiography , Anthropometry , China , Female , Humans , Male , Mathematics , Middle Aged , Reference Values , Reproducibility of Results
6.
Med Sci Monit ; 24: 7322-7328, 2018 Oct 14.
Article En | MEDLINE | ID: mdl-30317247

BACKGROUND Transforming growth factor (TGF)-ß1 is involved in the pathogenesis of coronary artery disease (CAD), but the mechanism of its action remains unclear. Our study aimed to investigate the role of TGF-ß1 in CAD and to explore the possible mechanisms. MATERIAL AND METHODS A total of 60 CAD patients and 54 healthy people were included in this study. Blood samples were drawn from each participant to prepare serum. ELISA was utilized to measure serum level of TGF-ß1. TGF-ß1 expression vector, TGF-ß1 siRNA, and TIMP-1 siRNA were transfected into human primary coronary artery endothelial cell (HCAEC) line cells, and expression of TGF-ß1 sphingosine kinase 1 (SPHK1) and TIMP metallopeptidase inhibitor 1 (TIMP-1) was detected by Western blot. Cell apoptosis was detected by MTT assay. RESULTS Serum level of TGF-ß1 was specifically higher in patients with CAD than in healthy controls. Serum levels of active TGF-ß1 can be used to effectively distinguish CAD patients from healthy controls. TGF-ß1 overexpression promoted the apoptosis of HCAEC and TGF-ß1 siRNA silencing inhibited the apoptosis of HCAEC. TGF-ß1 overexpression also promoted the expression of SPHK1 and TIMP-1. SPHK1 overexpression upregulated TIMP-1 but it showed no significant effects on TGF-ß1. TIMP-1 overexpression showed no significant effects on TGF-ß1 or SPHK1. SPHK1 inhibitor and TIMP-1 silencing reduced the enhancing effects of TGF-ß1 overexpression on cell apoptosis. CONCLUSIONS TGF-ß1 appears to promote CAD through the induction of cell apoptosis by upregulating SPHK1 expression and further upregulating its downstream TIMP-1.


Coronary Artery Disease/blood , Phosphotransferases (Alcohol Group Acceptor)/blood , Transforming Growth Factor beta1/blood , Adult , Aged , Case-Control Studies , Cells, Cultured , Coronary Artery Disease/enzymology , Endothelial Cells , Female , Humans , Male , Middle Aged , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , RNA, Small Interfering/genetics , Signal Transduction , Tissue Inhibitor of Metalloproteinase-1/biosynthesis , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transfection , Transforming Growth Factor beta1/biosynthesis , Transforming Growth Factor beta1/genetics , Up-Regulation
...