Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Environ Geochem Health ; 46(8): 280, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963449

ABSTRACT

The chlor-alkali industry (CAI) is crucial for global chemical production; however, its operation has led to widespread heavy metal (HM) contamination at numerous sites, which has not been thoroughly investigated. This study analysed 122 soil and groundwater samples from a typical CAI site in Kaifeng, China. Our aim was to assess the ecological and health risks, identify the sources, and examine the migration characteristics of HMs at this site using Monte Carlo simulation, absolute principal component score-multiple linear regression (APCS-MLR), and the potential environmental risk index (Ei). Our findings revealed that the exceedance rates for Cd, Pb, Hg, and Ni were 71.96%, 45.79%, 49.59%, and 65.42%, respectively. Mercury (Hg) displayed the greatest coefficient of variation across all the soil layers, indicating a significant anthropogenic influence. Cd and Hg were identified as having high and extremely high potential environmental risk levels, respectively. The spatial distributions of the improved Nemerow index (INI), total ecological risk (Ri), and HM content varied considerably, with the most contaminated areas typically associated with the storage of raw and auxiliary materials. Surface aggregation and significant vertical transport were noted for HMs; As and Ni showed substantial accumulation in subsoil layers, severely contaminating the groundwater. Self-organizing maps categorized the samples into two different groups, showing strong positive correlations between Cd, Pb, and Hg. The APCS-MLR model suggested that industrial emissions were the main contributors, accounting for 60.3% of the total HM input. Elevated hazard quotient values for Hg posed significant noncarcinogenic risks, whereas acceptable levels of carcinogenic risk were observed for both adults (96.60%) and children (97.83%). This study significantly enhances historical CAI pollution data and offers valuable insights into ongoing environmental and health challenges.


Subject(s)
Environmental Monitoring , Groundwater , Metals, Heavy , Soil Pollutants , Water Pollutants, Chemical , Metals, Heavy/analysis , China , Groundwater/chemistry , Soil Pollutants/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Humans , Chemical Industry
2.
Bioorg Chem ; 150: 107551, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38971094

ABSTRACT

Cancer is the most severe health problem facing most people today. Photodynamic therapy (PDT) for tumors has attracted attention because of its non-invasive nature, negligible adverse reactions, and high spatiotemporal selectivity. Developing biocompatible photosensitizers that can target, guide, and efficiently kill cancer cells is desirable in PDT. Here, two amphiphilic organic compounds, PS-I and PSS-II, were synthesized based on the D-π-A structure with a positive charge. The two AIEgens exhibited near-infrared emission, large Stokes shift, high 1O2 and O2-∙ generation efficiency, good biocompatibility, and photostability. They were co-incubated with cancer cells and eventually accumulated to lysosomes by cell imaging experiments. In vitro and in vivo experiments demonstrated that PS-I and PSS-II could effectively kill cancer cells and sufficiently inhibit tumor growth under light irradiation. PS-I had a higher fluorescence quantum yield in the aggregated state, which made it better for bio-imaging in imaging-guided photodynamic therapy. In contrast, PSS-II with a longer conjugated structure had more ROS generation to kill tumor cells under illumination, and the tumor growth inhibition of mice reached 71.95% during the treatment. No observable injury or undesirable outcomes were detected in the vital organs of the mice within the treatment group, suggesting that PSS-II/PS-I had a promising future in efficient imaging-guided PDT for cancer.

3.
Adv Mater ; : e2405930, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924191

ABSTRACT

The elevated levels of lactate in tumor tissue play a pivotal role in fostering an immunosuppressive microenvironment. Therefore, efficiently reducing lactate levels to reprogram tumor immune microenvironment (TIM) is considered a crucial step for boosted immunotherapy. Here, a high-lactate-metabolizing photosynthetic bacteria (LAB-1) is selectively screened for TIM reprogramming, which then improves the efficacy of tumor immunotherapy. The culture medium for LAB-1 screening is initially developed through an orthogonal experiment, simulating the tumor microenvironment (TME) and utilizing lactate as the sole organic carbon source. As demonstrated in a murine 4T1 model, LAB-1 colonizes the TME selectively, resulting in a significant reduction in lactate levels and a subsequent increase in pH values within the tumor tissue. Furthermore, single-cell RNA sequencing analysis reveals that LAB-1 effectively reprograms the TIM, thereby enhancing the effectiveness of antitumor immune therapy. This approach of utilizing lactate-consuming bacteria represents a potent tool for augmenting tumor immunotherapy efficiency.

4.
Chem Asian J ; : e202400311, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924357

ABSTRACT

Designing nanomedicines with low toxicity, high targeting, excellent therapeutic effects, and precise release is always the major challenges in clinical cancer treatment. Here, we report a light-enhanced tandem-responsive nano delivery platform COF-B@X-03 for amplified anti-tumor efficiency. Biotin-loaded COF-B@X-03 could precisely target tumor cells, and the azo and hydrazone bonds in it would be depolymerized by the overexpressed azoreductase and acidic microenvironment in hypoxic tumors. In vitro experimental results indicate mitochondrial and endoplasmic reticulum stress caused by COF-B@X-03 under light is the direct cause of tumor cell death. In vivo experimental data prove COF-B@X-03 achieves low oxygen dependent phototherapy, and the maintenance of intratumoral hypoxia provides the possibility for the continuous degradation of COF-B@X-03 to generate more reactive oxygen species for tumor photodynamic therapy by released X-03. In the end, COF-B@X-03 phototherapy group achieves higher tumor inhibition rate than X-03 phototherapy group, which is 81.37%. Meanwhile, COF-B@X-03 significantly eliminates the risk of tumor metastasis. In summary, the construction of this tandem-responsive nano delivery platform provides a new direction for achieving efficient removal of solid tumors in clinical practice.

5.
Cyborg Bionic Syst ; 5: 0105, 2024.
Article in English | MEDLINE | ID: mdl-38711958

ABSTRACT

Soft robotics has received substantial attention due to its remarkable deformability, making it well-suited for a wide range of applications in complex environments, such as medicine, rescue operations, and exploration. Within this domain, the interaction of actuation and sensing is of utmost importance for controlling the movements and functions of soft robots. Nonetheless, current research predominantly focuses on isolated actuation and sensing capabilities, often neglecting the critical integration of these 2 domains to achieve intelligent functionality. In this review, we present a comprehensive survey of fundamental actuation strategies and multimodal actuation while also delving into advancements in proprioceptive and haptic sensing and their fusion. We emphasize the importance of integrating actuation and sensing in soft robotics, presenting 3 integration methodologies, namely, sensor surface integration, sensor internal integration, and closed-loop system integration based on sensor feedback. Furthermore, we highlight the challenges in the field and suggest compelling directions for future research. Through this comprehensive synthesis, we aim to stimulate further curiosity among researchers and contribute to the development of genuinely intelligent soft robots.

6.
ACS Appl Mater Interfaces ; 16(21): 27339-27351, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38749766

ABSTRACT

The droplet-based nanogenerator (DNG) is a highly promising technology for harvesting high-entropy water energy in the era of the Internet of Things. Yet, despite the exciting progress made in recent years, challenges have emerged unexpectedly for the AC-type DNG-based energy system as it transitions from laboratory demonstrations to real-world applications. In this work, we propose a high-performance DNG system based on the total-current nanogenerator concept to address these challenges. This system utilizes the water-charge-shuttle architecture for easy scale-up, employs the field effect to boost charge density of the triboelectric layer, adopts an on-solar-panel design to improve compatibility with solar energy, and is equipped with a novel DC-DC buck converter as power management circuit. These features allow the proposed system to overcome the existing bottlenecks of DNG and empower the system with superior performances compared with previous ones. Notably, with the core architecture measuring only 15 cm × 12.5 cm × 0.3 cm in physical dimensions, this system reaches a record-high open-circuit voltage of 4200 V, capable of illuminating 1440 LEDs, and can charge a 4.7 mF capacitor to 4.5 V in less than 24 min. In addition, the practical potential of the proposed DNG system is further demonstrated through a self-powered, smart greenhouse application scenario. These demonstrations include the continuous operation of a thermohygrometer, the operation of a Bluetooth plant monitor, and the all-weather energy harvesting capability. This work will provide valuable inspiration and guidance for the systematic design of next-generation DNG to unlock the sustainable potential of distributed water energy for real-world applications.

7.
Chem Asian J ; 19(12): e202400305, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38651630

ABSTRACT

Designing and developing photosensitizers with cell membrane specificity is crucial for achieving effective multimodal therapy of tumors compared to other organelles. Here, we designed and screened a photosensitizer CM34 through donor/receptor regulation strategies, and it is able to achieve long-retention cell membrane targeting. It is not only an extremely excellent cell membrane targeted tumor theranostic agent, but also found to be a promising potential immune activator. Specifically, CM34 with a larger intramolecular twist angle is more likely to form larger aggregates in aqueous solutions, and the introduction of cyanide group also enhances its interaction with cell membranes, which were key factors hindering molecular penetration of the cell membrane and prolonging its residence time on the cell membrane, providing conditions for further membrane targeted photodynamic therapy. Furthermore, the efflux of contents caused by cell necrosis directly activates the immune response. In summary, this study realizes to clarify and refine all potential mechanisms of action through density functional theory calculations, photophysical property measurements, and cellular level mechanism exploration, providing a new direction for the clinical development of cell membrane targeted anti-tumor immune activators.


Subject(s)
Cell Membrane , Photosensitizing Agents , Humans , Cell Membrane/chemistry , Cell Membrane/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Photochemotherapy , Theranostic Nanomedicine , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Density Functional Theory , Neoplasms/drug therapy , Neoplasms/pathology , Molecular Structure
8.
Environ Sci Pollut Res Int ; 31(10): 14775-14790, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38280165

ABSTRACT

Spartina alterniflora, an invasive plant widely distributed in China's coastal regions, has had a significant impact on the stability of wetland ecosystems and elemental biogeochemical cycles. The invasion of S. alterniflora has been found to lead to the accumulation of sulfides in the soil. The cycling of sulfur and iron in the soil is closely interconnected. Coastal estuarine wetlands are influenced by both freshwater in rivers and seawater tides, as well as the frequent variations in redox conditions caused by tidal fluctuations, which makes the cycling of sulfur and iron in the soil invaded by S. alterniflora more intricate. In this study, field surveys and laboratory experiments were conducted to explore the effects of S. alterniflora invasion and hydrological changes on the cycling of sulfur and iron as well as related functional microorganisms in the soil. The invasion of S. alterniflora showed an increase in soil reduced inorganic sulfur (RIS) components in both high and low marshes of Jiuduansha wetland, with higher content observed in summer and autumn. The tidal simulation experiments revealed abundant sulfate in seawater tidal conditions could promote the formation of acid volatile sulfides (AVS) in the soil of low marshes invaded by S. alterniflora and ensuring the continuous increase in AVS content. Diffusive gradients in-thin-films (DGT) technology indicated the existence of high-concentration soluble S2- enrichment zones in the soil of low marshes invaded by S. alterniflora, which may be related to S. alterniflora root exudates. Tidal action increased the relative abundance of sulfur-reducing bacteria (SRB) in the soil of low marshes, and under the influence of seawater tidal action, SRB exhibited higher relative abundance. However, S. alterniflora might inhibit the activity of iron-reducing bacteria (FeRB) in the soil of low marshes. In conclusion, S. alterniflora may enhance the sulfate reduction rate and promote the formation of free sulfides in tidal salt marsh ecosystems by releasing root exudates that stimulate the activity of SRB, while concurrently inhibiting the activity of FeRB and reducing their competition with SRB. This effect is particularly pronounced in low marshes under seawater tidal conditions. Thus, S. alterniflora is capable of rapidly invading tidal salt marshes by utilizing sulfides effectively.


Subject(s)
Microbiota , Sulfur-Reducing Bacteria , Wetlands , Soil/chemistry , Introduced Species , Poaceae/physiology , Sulfur , Sulfates , Sulfides , China
9.
Bioorg Chem ; 143: 107020, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176374

ABSTRACT

Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Copper/pharmacology , Copper/metabolism , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Neoplasms/drug therapy
10.
PLoS One ; 19(1): e0298247, 2024.
Article in English | MEDLINE | ID: mdl-38295085

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0295565.].

11.
J Environ Manage ; 351: 119399, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056327

ABSTRACT

Investigating the CO2 abatement potential of urban residential building from systematic perspective is essential to reach the urban carbon neutrality target. However, previous studies on building CO2 emission trend forecasting were mainly focused on the building operational phase. In this study, a new framework that includes four building stages under a system dynamic model is developed to simulate urban residential building carbon emission changes and the related reduction potentials under three scenarios in Jiangxi Province up to 2060. Results showed that the overall process carbon emission dynamic had already peaked in 2014 under the three scenarios, with a peak value of 38.52 Mt. It then fell to 9.56 Mt in 2060 under the baseline (BAU) scenario. More importantly, seven carbon abatement measures were adopted during four building activities in this study, and the total carbon reduction was not the sum of the carbon reduction potential of the individual measures. Some carbon abatement strategies displayed synergistic effects such as low-carbon electrification where the combination of electrification and clean energy power generation was the largest contributor to reduced carbon emissions during building operation as a comprehensive carbon reduction measure. By contrast, extending a building's lifetime restrained the carbon abatement potential during the demolition stage, and it inhibited the carbon emission reduction by 24.84 Mt. These results highlight the significant need for effective policy interventions for clean production and the need to improve prefabricated building proportions, promote electrification, improve energy efficiency, strengthen recycling practices, and extend building lifetimes to promote decarbonization of urban residential building system development.


Subject(s)
Carbon Dioxide , Recycling , Carbon Dioxide/analysis , China , Carbon/analysis , Forecasting
12.
Chinese Journal of Biologicals ; (12): 227-233, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006863

ABSTRACT

@#Acquired immune deficiency syndrome,or AIDS,has been a major infectious disease that troubles the public health in a global scale. Human immunodeficiency virus type 1(HIV-1)is the causative reagent responsible for AIDS development. Even though the highly active anti-retroviral therapy(HAART,or the cocktail therapy)that has been widely applied could effectively suppress the infection and replication of HIV-1,the infected people suffer from other related diseases,such as the HIV-associated neurocognitive disorder(HAND). This paper mainly focused on the function of an important regulatory protein of HIV-1,trans-activator of transcription(Tat),and its correlation with HIV-1 replication and HAND development,so as to clarify the importance of developing anti-AIDS drugs targeting Tat protein

13.
PLoS One ; 18(12): e0295565, 2023.
Article in English | MEDLINE | ID: mdl-38079443

ABSTRACT

Identification of sugarcane stem nodes is generally dependent on high-performance recognition equipment in sugarcane seed pre-cutting machines and inefficient. Accordingly, this study proposes a novel lightweight architecture for the detection of sugarcane stem nodes based on the YOLOv5 framework, named G-YOLOv5s-SS. Firstly, the study removes the CBS and C3 structures at the end of the backbone network to fully utilize shallow-level feature information. This enhances the detection performance of sugarcane stem nodes. Simultaneously, it eliminates the 32 times down-sampled branches in the neck structure and the 20x20 detection heads at the prediction end, reducing model complexity. Secondly, a Ghost lightweight module is introduced to replace the conventional convolution module in the BottleNeck structure, further reducing the model's complexity. Finally, the study incorporates the SimAM attention mechanism to enhance the extraction of sugarcane stem node features without introducing additional parameters. This improvement aims to enhance recognition accuracy, compensating for any loss in precision due to lightweight modifications. The experimental results showed that the average precision of the improved network for sugarcane stem node identification reached 97.6%, which was 0.6% higher than that of the YOLOv5 baseline network. Meanwhile, a model size of 2.6MB, 1,129,340 parameters, and 7.2G FLOPs, representing respective reductions of 82%, 84%, and 54.4%. Compared with mainstream one-stage target detection algorithms such as YOLOv4-tiny, YOLOv4, YOLOv5n, YOLOv6n, YOLOv6s, YOLOv7-tiny, and YOLOv7, G-YOLOv5s-SS achieved respective average precision improvements of 12.9%, 5.07%, 3.6%, 2.1%, 1.2%, 3%, and 0.4% in sugarcane stem nodes recognition. Meanwhile, the model size was compressed by 88.9%, 98.9%, 33.3%, 72%, 92.9%, 78.8% and 96.3%, respectively. Compared with similar studies, G-YOLOv5s-SS not only enhanced recognition accuracy but also considered model size, demonstrating an overall excellent performance that aligns with the requirements of sugarcane seed pre-cutting machines.


Subject(s)
Saccharum , Algorithms , Erythrocyte Membrane , Mainstreaming, Education , Neck
14.
Small ; 19(50): e2305101, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635105

ABSTRACT

Design of effective nanodrugs to modulate the immunosuppression of tumor microenvironment is a desirable approach to boost the clinical tumor-therapeutic effect. Supramolecular nanomicelles PolyMN-TO-8, which are constructed by self-assembling supramolecular host MTX-MPEG2000, guest NPX-2S, and TO-8 through hydrophobic forces, have excellent stability and responsiveness to carboxylesterase and glutathione in turn. In vivo studies validate that PolyMN-TO-8 enable to trigger pyroptosis-mediated immunogenic cell death under laser, avoiding the occurrence of immune dysregulation simultaneously. This therapeutic mode strengthens dendritic cells' maturation and accelerates the infiltration of CD8+ T cells into tumors through moderate activation of pro-inflammatory factors with elimination of immune-escape, ultimately making the tumor inhibition rate as high as 87.44% via synergistic functions of photodynamic therapy, photothermal therapy, chemotherapy, etc. The loss of immune-escape quickens the infiltration of CD8+ T cells into lungs, and further eschews the generation of tumor nodules in it. Chemotherapy, the release of interferon-γ, and immune memory effect also strengthen the defense against metastasis. The generation of O2 catalyzed by PolyMN-TO-8 under laser is indispensable for tumor metastasis inhibition undoubtedly.


Subject(s)
Lung Neoplasms , Photochemotherapy , Triple Negative Breast Neoplasms , Humans , CD8-Positive T-Lymphocytes , Pyroptosis , Lung Neoplasms/drug therapy , Tumor Microenvironment , Cell Line, Tumor , Immunotherapy
15.
Carbohydr Polym ; 315: 120981, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37230618

ABSTRACT

Biological macromolecules had been studied as ligands in recent years, which not only give the complexes excellent polymer properties, but also have many advantages such as biodegradability. Carboxymethyl chitosan (CMCh) is excellent biological macromolecular ligand because of its abundant active amino and carboxyl groups, and it can smoothly transfer energy to Ln3+ after coordinating. To further study the energy transfer mechanism of CMCh-Ln3+ complexes, CMCh-Eu3+/Tb3+ complexes with different Eu3+/Tb3+ ratios were prepared by using CMCh as a ligand. The morphology, structure, and properties of CMCh-Eu3+/Tb3+ were characterized and analyzed by infrared spectroscopy, XPS, TG and Judd-Ofelt theory, thus the chemical structure of CMCh-Eu3+/Tb3+ was determined. The mechanism of energy transfer was explained in detail, also the Förster resonance transfer model is confirmed, and the hypothesis of energy transfer back was verified by the characterization and calculation methods of fluorescence spectra, UV spectra, phosphorescence spectra and fluorescence lifetime. Finally, CMCh-Eu3+/Tb3+ with different molar ratios were used to prepare a series of multicolor LED lamps, and it extends the application range of biological macromolecules as ligands.

16.
Synth Syst Biotechnol ; 8(2): 213-219, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36875498

ABSTRACT

Nucleic acid detection plays a key role in diverse diagnosis and disease control. Currently available nucleic acid detection techniques are challenged by trade-offs among speed, simplicity, precision and cost. Here, we described a novel method, designated SENSOR (Sulfur DNA mediated nucleic acid sensing platform), for rapid nucleic acid detection. SENSOR was developed from phosphorothioate (PT)-DNA and sulfur binding domain (SBD) which specifically binds double-stranded PT-modified DNA. SENSOR utilizes PT-DNA oligo and SBD as targeting module, which is linked with split luciferase reporter to generate luminescence signal within 10 min. We tested detection on synthesized nucleic acid and COVID-19 pseudovirus, achieving attomolar sensitivity combined with an amplification procedure. Single nucleotide polymorphisms (SNP) could also be discriminated. Indicating SENSOR a new promising nucleic acid detection technique.

17.
Ann Bot ; 131(3): 451-461, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36624896

ABSTRACT

BACKGROUND: In arid and semi-arid areas, plants can directly absorb and use dew through their leaves, and some plants have the ability for hydraulic redistribution of their roots. Therefore, in arid areas, plants may redistribute dew to the soil, using the soil as a reservoir for short-term dry seasons, i.e. dew may participate in the hydraulic redistribution process of plants. This process plays an important role in plant survival and community stability. METHODS: To verify this hypothesis, we investigated the water use mechanism of Populus euphratica through a comprehensive observation of sap flow, water potential and soil water content using a heavy water tracer experiment under in situ field conditions. RESULTS AND DISCUSSION: Dewdrops contributed 28.3 % of soil moisture near the roots, and applying dew on leaves for several days significantly improved soil moisture status. Hydraulic redistribution in the roots mainly occurred from 2200 h at night to 800 h the following day and mainly occurred in the 20- to 80-cm soil layer. Water storage in the trunk is the intermediate link in the coupling process of foliar water uptake and hydraulic redistribution; water storage in the trunk is mainly replenished from May to July and consumed throughout the rest of the year. In conclusion, dew redistributes water into soil through the coupling process of foliar water uptake and hydraulic redistribution. Populus euphratica uses the trunk and soil for water storage to cope with water stress during short-term drought periods. Our findings provide a scientific basis for the restoration of different species in water-deficient areas, which is conducive to maintaining vegetation ecosystem stability in areas of desertification and improving the soil water balance.


Subject(s)
Ecosystem , Populus , Droughts , Plant Transpiration , Soil , Plant Roots
18.
Integr Psychol Behav Sci ; 57(3): 1002-1023, 2023 09.
Article in English | MEDLINE | ID: mdl-36261774

ABSTRACT

Hiroshima Peace Memorial Park is widely known as a universal symbol of peace, but there have not been studies of how people actually experience and interpret it. This article presents a detailed case study of a visit to the memorial by using an innovative methodology based on the use of subjective cameras (subcams). Results show that despite the monolithic idea of peace that the memorial officially represents, it is experienced and interpreted in terms of a constant tension which exposes conflicts in post-war Japan memory politics. The dichotomies of war/peace, death/life, past/future, and old /new emerge as part of the participant's encounter with different situations during his visit. This is particularly clear where he perceives border zones and points of intersection. The article concludes by interpreting these dichotomies through the notion of themata, as elementary dichotomies that underlie a social debate around a specific topic. Specifically, two themata are proposed: one revolving around the temporal problematisation of the past and the future in the memory politics of the A-Bomb, and the other revolving around the spatial dichotomy between the old and the new underlying Hiroshima's urban renewal.


Subject(s)
Warfare , Male , Humans , Japan
19.
ACS Appl Mater Interfaces ; 14(4): 5308-5317, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35073038

ABSTRACT

Li- and Mn-rich cathodes (LMRs) with cationic and anionic redox reactions are considered as promising cathode materials for high-energy-density Li-ion batteries. However, the oxygen redox process leads to lattice oxygen loss and structure degradation, which would induce serious voltage fade and capacity loss and thus limit the practical application. High-valent and electrochemical inactive d0 element doping is an effective method to tune the crystal and electronic structures, which are the main factors for the electrochemical stability. Herein, noticeably inhibited oxygen loss, reduced voltage fade, enhanced rate performance, and improved structure stability and thermal stability of LMRs have been realized by Ti4+ and Zr4+ dual-doping. The underlying modulation mechanisms are unraveled by combining differential electrochemical mass spectrometry, soft X-ray absorption spectroscopies, in situ XRD measurements, etc. The dual-doping reduces the covalency of the TM-O bond, mitigates the irreversible oxygen release during the oxygen redox, and stabilizes the layered framework. The expanded lithium layer facilitates the lithium diffusion kinetics and structure stability. This study may result in the fundamental understanding of crystal and electronic structure evolution in LMRs and contribute to the development of high capacity cathodes.

20.
Zookeys ; 1120: 47-66, 2022.
Article in English | MEDLINE | ID: mdl-36760328

ABSTRACT

Karstic landscapes play an important role in biodiversity formation and often contain high levels of endemism. However, site-endemic taxa in karstic landscapes are being threatened by exploitation and weak legal protection. In this study, we describe Odorranaconcelata Wang, Zeng, & Lin, sp. nov., a limestone karst-restricted odorous frog from northern Guangdong, China. This new species shows distinctive genetic divergence and morphological differences from its congeners. Phylogenetic results suggest that the new species represents an independent lineage that is grouped with O.lipuensis and O.liboensis based on the mitochondrial 16S and 12S ribosomal RNA genes. We recommend the new species be listed as Vulnerable (VU) in the IUCN categorization as it is only known from the type locality with limited microhabitats and is threatened by habitat degradation.

SELECTION OF CITATIONS
SEARCH DETAIL
...